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Abstract

In studying the magnetic properties of any ionic solid, it is important to know what
kind of magnetic ions are present and how they are situated in the lattice. The magnetic
properties of a given ion are usually profoundly influenced by the electric fields of
neighboring ions. In general, the energy level diagram of the ion consists of a low-lying
group, with an overall spacing of probably less than typically 1 cm™, and a large gap to the
next set of levels. From general perturbation theory considerations, considerable mixing of
the low-lying states must be expected, but admixture of the higher excited states are likely
to be small and can be neglected. Then it is a good approximation to assume that the ion
only has the low-lying states. This is the spin Hamiltonian approximation- to replace the
Hamiltonian of the ion, with all its states, by another Hamiltonian which accurately
describes only the low-lying states. It is valuable to recognize that the spin Hamiltonian
does two distinct things. It first provides a means of setting down in a compact way, the
results of many measurements, all of which can be retrieved by suitable manipulations. It
also provides a starting (or end) point for a detailed theoretical discussion of the ion in its
environment.

In this note, a spin Hamiltonian, which first appears in the work of Van Vleck,' is
introduced. A mass of experimental information can be summed up succinctly in a spin
Hamiltonian in just the way that the theoretician finds most acceptable, and the
experimentalists reasonably comprehensible. If there are # states, the matrix representation
of the spin Hamiltonian, using any axis of quantization, will be a finite Hermitian (n x n)
matrix. Its matrix elements will depends on the magnitude and direction of the magnetic
field and on the axis of quantization.

In this note, we use the Mathematica to obtain the calculations of expansion of the
crystal field, 2p and 3d wavefunctions, the matrix elements over the wavefunctions,
eigenvalue problems based on the quantum mechanics. These procedures make it much
easier for students (who are not familiar with quantum mechanics) to understand the
essential point of magnetism. We show how to derive the eigenvalue problems for the spin
Hamiltonian of the magnetic ions in the crystal field. It is sometime complicated for the
system having many electrons. We note that there are many excellent textbooks on the
magnetism, including White? (Quantum Theory of Magnetism), Kittel’ (Introduction to
Solid State Physics), and Yosida* (Theory of Magnetism). Students in Japan study
magnetism using famous textbook of Kanamori® (Magnetism), and Date® (Electron Spin
Resonance). These books are written in Japanese.

One of the authors (MS) has been studying the magnetic properties of quasi two-
dimensional magnetic systems such as Rbo,CoFy4, stage-2 CoCly-, NiCl-, CrCls-, MnCls-,
FeClz-, and CuCl,- graphite intercalation compounds (GIC’s) using SQUID magnetometer
and magnetic neutron scattering since 1977. This note is written from a view point of
experimentalist, rather than theorists.
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1. Introduction: a brief history on the modern magnetism

Magnetism is inseparable from quantum mechanics, for a strictly classical system in
thermal equilibrium can display no magnetic moment, even in a magnetic field (Kittel’).
The magnetism is essentially the quantum phenomenon and is a property, reflecting the
feature of quantum mechanics. In his talk titled the quantum mechanics, key to
understanding magnetism (the Nobel lecture, December 8, 1977), Van Vleck' pointed out
that modern theories of magnetism have roots in two distinct traditions of theoretical
developments. The first outstanding early attempt to understand magnetism at the atomic
level was provided by the semi-empirical theories of Langevin and Weiss. These theories
were able to explain experimental results on the magnetic properties of materials. Langevin



assumed that an atomic or molecular magnet carries a permanent magnetic moment. He
was quantizing the system without realizing it. If one applies classical dynamics and
statistical mechanics consistently, one finds that the diamagnetic and paramagnetic
contributions to the magnetic susceptibility exactly cancel. Thus there should be no
magnetism. The break-through in understanding of magnetic phenomena at the atomic
level occurred in 1913, when Niels Bohr introduced the significant concept of the
quantization of the orbital angular momentum, as a part of his remarkable theory of the
hydrogen spectrum. The quantization of electron orbits implied the existence of an
elementary magnetic moment, the Bohr magneton. In 1922, Stern and Gerlach
experimentally verified the quantized orbital angular momentum and hence the orbital
magnetic moment.

The advent of quantum mechanics in 1926 furnished at last the key to the quantitative
understanding of magnetism, (i) the discovery of the matrix form of quantum mechanics
by Heisenberg and Born, (ii) the alternative but equivalent wave mechanical form by de
Broglie and Schrodinger, and (iii) the introduction of electron spin by Uhlenbeck and
Goulsmit. A quantum mechanics without spin and the Pauli’s exclusion principle would
not have been able to understand even the structure of the periodic table or most magnetic
phenomena. Originally spin was a sort of the appendage to the mathematical framework,
but in 1928, Dirac synthesized everything in his remarkable four first order simultaneous
equations which is relativistically invariant under the Lorentz transformation. The electron

spin and the factor of two came naturally out of the calculation. In 1928, Heisenberg has
shown how the previously obscure Weiss molecular field could be attributed to a quantum
mechanical exchange effect, arising from the Pauli’s exclusion principle that no two
electrons occupy the same state. The forces of interaction between neighboring atoms give
rise to a exchange coupling between unpaired spinning electron. This leads to a scalar
isotropic interaction of two spins with an exchange interaction constant (see the book
written by Hoddeson et al.’, “Out of the Crystal Maze” for more detail of the above review).

In the early 1930’s there appeared two major textbooks devoted to the topics of
magnetism, Van Vleck’s Theory of Electric and Magnetic Susceptibilities (1932)® and
Stoner’s Magnetism and Matter (1934).° These are considered to be the best classic texts
in modern magnetism.

John H. Van Vleck (born March 13, 1899, Middletown, Connecticut, died Oct. 27, 1980,
Cambridge, Massachusetts.) American physicist and mathematician who shared the Nobel
Prize for Physics in 1977 with Philip W. Anderson and Nevill F. Mott. The prize honoured
Van Vleck's contributions to the understanding of the behavior of electrons in magnetic,
non-crystalline solid materials. Educated at the University of Wisconsin, Madison, and at
Harvard University, where he received his Ph.D. in 1922, He developed during the early
1930s the first fully articulated quantum mechanical theory of magnetism. Later he was a
chief architect of the ligand field theory of molecular bonding.

2. Fundamentals
A. Angular momentum and magnetic momentum of one electron



T

—
S~

r

Fig.1 Orbital (circular) motion of electron with mass m and a charge —e. The
direction of orbital angular momentum L is perpendicular to the plane of
the motion (x-y plane).

The orbital angular momentum of an electron (charge —e and mass m) L is defined by

L=rxp=rx(mv),or L_=mvr. (2.1)

According to the de Broglie relation, we have

pQRm) = %2727* =nh, (2.2)

where p (= mv) is the momentum ( p =%), n is integer, & is the Planck constant, and A is

the wavelength.
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Fig.2 Acceptable wave on the ring (circular orbit). The circumference should
be equal to the integer n (=1, 2, 3,...) times the de Broglie wavelength A.



The picture of fitting the de Broglie waves onto a circle makes clear the
reason why the orbital angular momentum is quantized. Only integral
numbers of wavelengths can be fitted. Otherwise, there would be
destructive interference between waves on successive cycles of the ring.

Then the angular momentum L. is described by

Lzzprzmvrzn—hznh. (2.3)
2

The magnetic moment of the electron is given by

i = %IHA, (2.4)

where c is the velocity of light, 4 = 777 is the are of the electron orbit, and /y is the current
due to the circular motion of the electron. Note that the direction of the current is opposite

to that of the velocity because of the negative charge of the electron. The current /p is given
by

I=—o=-—°% -2 2.5)
T~ Qulv) 2w

where T is the period of the circular motion. Then the magnetic moment is derived as

1 evr e eh L Y7,
=—J A=——-=— "L =———=2="LB] (>0), 2.6
st 2c 2mec © 2mc h hz( ) (2-6)
where 15 (Z;—h) is the Bohr magneton. up=9.27400915 x 10! emu. emu=erg/Oe. Since
mc

L _=nh, the magnitude of orbital magnetic moment is nus.
The spin magnetic moment is given by

2
g =— ;‘B S, 2.7)

where S is the spin angular momentum.
In quantum mechanics, the above equation is described by

i :_2213 S, 2.8)




using operators (Dirac). When S = g 6 ,wehave [ =—u,6 . The spin angular momentum

is described by the Pauli matrices (operators)

~ h. & h. a4 R,
SXzEGX’Sy:EGySZzEGZ' (29)
Using the basis,
1 0
A= |- = . 2.10

we have

R 0 1) . 0 —i) | 1 0 2.11)
o, = ,O, = ,O, = . .
* 1 0 g i 0 0 -1

The commutation relations are valid;

[6,,0,]=2i6.,[0,,6.]=2i6,, [0.,6,]=2iG,. (2.12)

The resultant magnetic moment of an electron is given by
__Hp
n= 7(L+2S). (2.13)

B. Periodic table of iron group elements
The Pauli principle produces any two electrons being in the same state (i.e., having the
set of (n, [, mi, ms).

For fixed n, [ =n-1, n-2, ..., 2, 1
m=11-1, ..., -1 (2] +1).
Therefore there are n” states for a given n.

n-1

Z (21+1) // Simplify
l=0

2
n

There are two values for ms (= £1/2).
Thus, corresponding to any value of n, there are 21 states.

K shell
n
1

3
[

ms

12 +1/2 (1s)

(e}



L shell

n l m s My

2 0 0 1/2 +1/2 (2s)?

2 1 1,0,-1 1/2 +1/2 (2p)°
M shell

n l m S My

3 0 0 1/2 +1/2 (3s)?

3 1 1,0,-1 12 +1/2 (3p)°

3 2 2,1,0,-1,-2 1/2 +1/2 (3d)°
N shell

n l m S My

4 0 0 1/2 +1/2 (4s)?

4 1 1,0,-1 1/2 +1/2 (4p)°

4 2 2,1,0,-1,-2 1/2 +1/2 (4d)°

4 3 3,2,1,0,-1,-2,-3 1/2 +1/2 4nH'

(15)%(25)*(2p)°I(35)*(3p)°(3d)'°|(4s)*(4p)°(4d) °(4D) ¥|(59)*(Sp)° ((5d)"°.....
Iron-group elements:

Ti*, v (15)’(25)%(2p)°I(3s)°(3p)°I(3d)!
v (18)%(25)%(2p)°I(3s)°(3p)°I(3d)*
Crt, v (19)(28)2(2p)°I(3s)*(3p)°I(3d)°
Cr, M (18)%(25)%(2p)°I(3s)*(3p)°|(3d)*
Mn*", Fe*™  (18)%](25)%(2p)°I(38)*(3p)°|(3d)°

Fe?' (18)%(25)%(2p)°I(3s)°(3p)°I(3d)°
Co?* (18)%(25)%(2p)°I3s)°(3p)°I(3d)’
NiZ* (18)%(25)*(2p)°I3s)°(3p)°I(3d)*
Cu?* (15)%(25)*(2p)°I3s)°(3p)°I(3d)”

Atoms with filled # shells have a total angular momentum and a total spin of zero.
Electrons exterior these closed shells are called valence electrons.

C. Magnetic moment of atom
We consider an isolated atom with incomplete shell of electrons. The orbital angular
momentum L and spin angular momentum § are given by
L=L+L +L,+..,S=S+S,+S,+... (2.14)
The total angular momentum J is defined by

J=L+S. (2.15)

The total magnetic moment g is given by



u :—%(L+2S). (2.16)

The Landé g-factor is defined by

p, =-S5, 2.17)
h
where
Fig.3 Basic classical vector model of orbital angular momentum (L), spin
angular momentum (), orbital magnetic moment (ur), and spin magnetic
moment (us). J (= L + §) is the total angular momentum. g is the
component of the total magnetic moment (ur + us) along the direction (-
J).
Suppose that
L=aJ+L, (2.18a)
S=bJ+S,, (2.19b)

where a and b are constants, and the vectors S| and L, are perpendicular to J.

Here we have the relation a+b=1,and L, +8, =0. The values of a and b are determined
as follows.



b= (2.19)

Here we note that

J-S=(L+S)-S

=S’+L-S : (2.20)
JP-r-8 J-L+§°

2 2

=85+

or

JP-U+S K

J-S : =+ =L+ +S(S+1)], (2.21)

using the average in quantum mechanics. The total magnetic moment g is
u :—%(L+2S) :—%[(a+2b)J+(LL+2SL)]. (2.22)

Thus we have

p,=-L2a+2b) g =-L2(1+b)g=-58L8 5 (2.23)
h h h
with
g, =14p=1425 .3, SEFD-LL+D (2.24)
J: 2 2J(J +1)
((Note))
The spin component is given by
S=bJ+S =(g,-DJ+S,, (2.25)
with b =g, —1. The de Gennes factor is defined by
N2 72
& =D o i), (2.26)

hz

10



In ions with strong spin-orbit coupling the spin is not a good quantum number, but rather
the total angular momentum , J = L+S. The spin operator is described by

S=(g,-J. (2.27)

D. Spin-orbit interaction in an electron around the nucleus

The electron has an orbital motion around the nucleus. This also implies that the
nucleus has an orbital motion around the electron. The motion of nucleus produces an
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron.

Boff

electron {-e)

Fig.4 Simple model for the spin-orbit interaction. The orbital current due to the
circular motion of the nucleus (with velocity vn and charge Ze) produces
an magnetic field at the center where the electron is located.

The current / due to the movement of nucleus (charge Ze, e>0) is given by

Idl=Zev,,, (2.28)

where v, is the velocity of the nucleus and % =v, . Note that

Aq dl
Idl =—=dl = Ag— = Zev,, . 2.29
Ar 9 N (2.29)

The effective magnetic field at the electron at the origin is

_idlxr1

=——F,
effcrl

B Vy =Ve,, (2.30)

where v is the velocity of the electron. Then we have

_Zev,xr, Zeve,xr
o T 3T

c 5

B

2.31)

3
¢ 5

11



Since r, =-r, B, can be rewritten as

_Zevyxn _Zeve,xn,

eff — 3 - 3 >
ff c n c n

B

or

Zeve,xr Zeve,xr Zeve, Zeve Zemv

Be/f: 3 2 2 2
C r C r cC r cC r

The Coulomb potential energy is given by

Ze? dv.(r) Ze*
Vi =-=, ) _Ze
7 dr 7

Thus we have

2 2
_ Zemrve _Ze m ., Ze“myrv

B, = = =
T mert 7 meer® © mcerr’
1 Zé
_ L;mo ] :Lw@ez
mcer r mcer dr
or
g - L 1dr(,

- )
T meer dr C°

where L. is the z-component of the orbital angular momentum, L =mvr .

The spin magnetic moment is given by

_ g

M A
The Zeeman energy is given by

1

HLS :_Eluv Bef/
:_1[_2% SM 1 lch(r)Lj
2 /] mcer dr
BRVIAG

:2mzcz r dr §-L=c(8-1)

12

mcr

2

P

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



((Thomas correction))

Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration
of the electron. The electron spin, magnetic moment, and spin-orbit interaction can be
derived directly from the Dirac relativistic electron theory. The Thomas factor is built in
the expression.

H, =& L, (2.39)

with

R VI AGINN P A
(o e )37 (). @40

When we use the formula

3 z’
NE 241
) n'a, 11 +1/2)(1 +1) 241

the spin-orbit interaction constant £ is described by

A me*Z*
c= 22 4 3 =5 2 426 ) (2.42)
2mcn’ay l(1+1/2)(1+1) 2cn"RI(+1/2)(1+1)
where
hz
ay =— =0.52917720859 A. (2.43)
me
(Bohr radius, from NIST physics constants)
The energy level (negative) is given by
7' met 7%
E |-— =—. 2.44
£, n’ 2n°  2n’a, (244)
The ratio #°£/|E,| is
2 472 2
hé: 2 272 ¢ 2 :(CZZZ) 1 ) (2.45)
E| cnhil(1+1/2)1+1) n~ I(l+1/2)(+1)

with

13



e 1
he  137.037°

o= (2.46)

((Note)) For / = 0 the spin-orbit interaction vanishes and therefore £= 0 in this case.

3. Hund’s rule
3.1.  Electron states in the atom

For a given /, the number m takes 2/ +1 values. The number s is restricted to only two
values +1/2. Hence there are altogether 2(2/+1) different states with the same n and /. There
states are said to be equivalent.

According to Pauli’s principle, there can be only one electron in each such state. Thus
at most 2(2/+1) electrons in an atom can simultaneously have the same n and /.

Hund’s rule is known concerning the relative position of levels with the same configuration
but different L and S.

Hund’first law
(1) The maximum values of the total spin S allowed by the exclusion principle.
Hund’s second law
(2) The maximum values of the total orbital angular momentum L consistent with this
value of S.
Huns’s third law

1 J= |L -8 | for less than half full (spin-orbit interaction, the discussion will be made

later)
(i) J =L+ S for more than half full (spin-orbit interaction).

3.2.  The electron configuration (3d)" (I=2,n=1-10)

A d shell corresponds to / = 2, with five values of m;. Multiplying this by 2 for the spin
states gives a total of 10. Then the configuration (3d)!° represents a full shell. It is non-
degenerate, and the state is 'So. This is a general rule for a full shell. It follows because
each of electrons must have a different pair of m; and m; values.

(3d)12 Ti3+, V4+
D3, (ground state)

: —4

1

0
1
-2 L=2,85=1/2,J=3/2,
Fig.5(a) Hund’s law for the (3d)' electron configuration.
(3d)*: V**
3F2

14



]

-1

-2 L=3,S=1,J=2,
Fig.5(b) Hund’s law for the (3d)? electron configuration.

(3d)3: CI'3+, V2+

*Fin
2
1
0
-1
2 L=3,5=3/2,J=3/2,
Fig.5(c) Hund’s law for the (3d)’ electron configuration.
(3d)*: Cr**, Mn**
SDO
2
1
0
-1
-2 L=2,8=2,J=0
Fig.5(d) Hund’s law for the (3d)* electron configuration.
(3d)’: Fe*", Mn**
5Ss
2
1
0
g
-2
L=0,5=5/2,J=5/2
Fig.5(e) Hund’s law for the (3d)’ electron configuration.
(3d)®: Fe**
SD4

15
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' '
[NE

L=2,8§=2,J=4

Fig.5(H) Hund’s law for the (3d)° electron configuration.
(3d)’: Co**
*Fon
2
1
0
-1
-2
L=3,8=3/2,J=9/2
Fig.5(g) Hund’s law for the (3d)’ electron configuration.
(3d)®: Ni**
3F4
2
1
0
-1
-2
L=3,8§=1,J=4
Fig.5(h) Hund’s law for the (3d)® electron configuration.
(3dy’: Cu**
Dsp
2
1
0
-1
-2
L=2,8=1/2,J=5/2
Fig.5(i)

Hund’s law for the (3d)’ electron configuration.

16



(3d)’

This configuration represents a set of electrons one short of a full shell. Since a full shell
has zero angular momentum (both orbital and spin), it follows that if one electron is
removed from a full shell, the spin angular momentum of the remainder are minus those of
the one that was removed. So the L, S, and J values of remainder are the same as if there
were only one electron in the shell.

(3 d)lO
A d shell corresponds to / = 2, with five values of m;. Multiplying this by two for the spin
states gives 10. Thus the configuration (3d)'® represents a full shell. L=0.S=0. J= 0.

3.3.  Spin orbit interaction of isolated atom
The total spin-orbit interaction is given by

HLS=§ZSi'Li=ﬁ“L'Sa 3.1)

where i and L; are the spin and orbital angular momenta, respectively (Wigner-Eckart
theorem). We take an average of both sides.

EXm’m =M, M, (3.2)

where My = L, Ms = S which are determined from the Hund rules (1) and (2).
For simplicity, we now consider the ground state of the (3d)" electron configuration.

L=3,5=3/2 L=3,5=3/2
Fig.6 Hund’s law for (3d)* and (3d)’ electron configurations.

The value of J can have J = L+S, L+S-1,....., |L-§|.
When A > 0, the energy becomes low for the smallest value of J (= |L-S]) (antiparallel).
When A <0, the energy becomes low for the largest value of J (= L+S) (parallel).

(D) Less than half case (n'< 2/+1)
1
éE-L:lL-S, (3.3)

17



where S = n/2. Then we have A = % = 3 >0, which favors J = |L-§|.
n

(2) More than half case (n>2/+1)

11 &
~.0-—L)=AL-S,or A=———2> <0, 3.4
s 05D o 200 +1)—n S

where
S —1(21+1)—1[n—(21+1]—(21+1)—f
2 2 2

This condition favors J = L+S. The third Hund’ rule is a consequence of the sign of the
spin-orbit interaction.

4. Crystal field
4.1  Overview

Rare-earth: The 4f shell responsible for paramagnetism lies deep inside the ions, within
the 5s and 5p shells. J is a good quantum number. (L-S coupling>> crystal field).

Iron group: The 3d shell responsible for paramagnetism is the outermost shell. The 3d
shell experiences the intense inhomogeneous electric field produced by neighboring ions.
The inhomogeneous electric field is called the crystal field. (Crystal fiel>>L-S coupling).

Two major effect of the crystal field
(1) The coupling of L and S is largely broken up. So that the states are no longer specified

by their J values.

(2L+1)(28+1) degeneracy—orbital splitting due to the crystal field (degeneracy
25+1)—L-S coupling
(i) 2L+1 sublevels belonging to a given L, which are degenerate in the free ion may now
be split by the crystal field. The quenching of the orbital angular momentum.
(2J+1) degeneracy (Hund’s rules)—L-S coupling—-crystal field.

10,14 5

We note that there are many excellent textbooks, review articles,'> and original
papers'®!7 on the ligand field theory, including Griffiths (The Theory of Transition-Metal
Ions),'® Abraham and Bleaney (Electron Paramagnetic Resonance of Transition Ions),'!
Sugano et al. (Multiplets of Transition-Metal Ions in Crystals),'? Inui et al. (Group Theory
and Its Applications in Physics),'* and Ballhausen (Introduction to Ligand Field Theory).!*

4.2 Series expansion of the crystal field

Ions M at the origin (0, 0, 0) are surrounded by six negative ions X with charge —Ze (e >
0), which are located on the x-, y-, and z-axes at the coordinates (+a, 0, 0), (0, +b, 0), and
(0, 0, £c), where a, b, and ¢ are distances.

18



X

Fig.7 Crystal structure of octahedral and tetragonal structures. A magnetic ion
(red solid circle) with one electron (a charge —e) is located at the origin.
Six ions (open circles, each ion has a —Ze charges) are located on the x-,
y-, and z-axes at the coordinates (£ a, 0, 0), (0, = b, 0), and (0, 0, £ ¢),
where a, b, and c are distances. a = b = ¢ for the octahedral structure. a =
b # c for the tetragonal structure.

We consider an electrostatic potential energy of an electron (a charge —e, typically 2p, 34,
or 4f electrons) of the M ion, due to the Coulomb field (ligand), defined by

V(r) = Ze? ! + ! + !
\/(x—a)2+y2+zz \/(x+a)2+y2+zz \/x2+(y—b)2+zz
1 1 1
+ + +
\/)c2+(y+b)2+z2 \/)c2+yz+(z—c)2 \/)c2+yz+(z+c)2

4.1
where a = b = ¢ for the orthorhombic (cubic) field and a = b (# ¢) for the tetragonal field.
4.3 Mathematica program
We use the Mathematica to expand V(r) around the origin in terms of the powers xPy9z"
with the maximum ofp +¢qg+r=n
(1) n =2 for the 2p electrons.

(i) n =4 for the 3d electrons,

(i) n=06 for the 4f electrons.
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Expansion of the Crystal field
Orthorhombic, orthogonal, tetragonal

Clear ["Global™ =*"];

1 1 1
Ve = + + +
'\/(x—a)2+y2+22 \/(x+a)2+y2+z2 '\/(y—b)2+x2+22
1 1 1
+ +
'\/(y+b)2+x2+22 '\/(z—c)2+y2+x2 '\/(z+c)2+y2+x2
1 1 1
+ + +
\/(—a+x)2+y2+z2 \/(a+x)2+y2+z2 \/X2+(—b+y)2+z2
1 1 1

+ +
\/X2+(b+y)2+z2 \/x2+y2+(—c+z)2 \/X2+y2+(c+z)2

hla , ] :=1f[0<sa<43,1,0];

General case (the highest order=4)
eql =
Series [Vc, {x, 0, 4}, {v, 0, 4}, {z, 0, 4}] //
FullSimplify [#, {a>0, b>0, ¢>0}] & // Normal // Expand ;
eql2 =Sum [x° y? z° Coefficient [xyzeql, %Pyl r+1]
hip+q+x, 41 , {p, 0, 4}, {q, 0, 4}, {zr, O, 4}]
2221(422)2148 1818)4
+ — X+ — — — X +
2
4

z

5 T s 5
a> b’ ¢

1( 2 2) , 1( 24 24 6) ,
= [-— + -y - - | Xy o+

2 al p* a® b

1 (1 48 18) 4 1( 2 2 4) 2 1( 24 6 2
ST e e el B A e e e B A e Tl I Gl A
24 \a® p> & 2\ ad pt &l 4 a® b’ <

1(6 24 24) ) 1 (18 18 48) 4

===y z+— |—+—+—]z

4 a5 bS c5 24 a5 bS c5

The crystal field of the d electrons
The case of a = b = ¢ (orthorhombic (cubic))

eq2 =eql2 /. {b»a, c>»a} // Expand
6 T1x* 21x*y* 1yt 21x*z? 21ytZ? 12t
-+ — - - + —

a 2a’ 2a’ 2a’ 2a’ 2a’ 2a’
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This can be written as
eq3 =_6 +£ (x4+y4+z4_§ (x2+y2+z2)2) // Expand
a 43a° 5

7x 21x%y? Tyt 21x%z? 21yizZ? 7zt
—_— == L _ - + —

2a’ 2al 2ad 2a’ 2al 2a’

6
- +
a
eq2 - eq3 // Simplify
0

The case of a = b but not equal to ¢ (tetragonal)

eqd =eql2 /. {b->a} // Expand

4 2 x x* 11x' 3xP yr oyP 12xy? 3xPyP 11yt
-+~ +— - — + +— + = = = + +
a ¢ a ¢ 4 a° 4> & o? a’ 2¢cd 4 a°
3yt 222 227 9x%z? 6x*z? 9y*z? 6yiz? 3z 22¢
_— - — 4+ — - — - — + — + —
4 ¢cd a’ c? 2a’ cd 2a’ cd 2a’ e’
This can be written as
4 2 1 1 20 15
eq5 = — + - +(— ——) (x2+y2—2z2)+(— +—) (x4+y4+z4)—
a ¢ \a} ¢t 435 4
5 5 ) 4 22 9 12 2 2. _2\2
— - —| (2" + 6x°y —[—+—)x+y + 2z // Expand
[4a5 4c8 ( ) 435 4 ( )
4 2 %2 %2 11x' 3x' yr oyr 12xPyt 3xfy? 11yt
-+ = +— - — + +— + = - = = + + +
a c a' ¢ 4 a° 4> & o? a’ 2¢cd 4 a°
3yt 2z? 22 9x%z% 6x%z? 9yPz? 6y?z? 3z' 22zf
_— — 4y — - - - - +— + —
4 ¢cd a’ c? 2a’ cd 2a’ cd 2a’ cd
eq4 -eqg5 // Simplify
0

Crystal field for the p electrobns (the highest order = 2)
a, b and c are different.

g+l zr+]. ]

eql3 = Sum [x" y? 2z Coefficient [xyzeql, x™ vy
h[p+qg+z, 21, {p, 0, 4}, {q, 0, 4}, {r, 0, 4}]

2 2 2 1 4 2 2 )

-+t -+ -+ = |—= -— - — +

a b ¢ 2 \33 b3 c3
1/ 2 4 2y, 1( 2 2 4y,
-+t —=-—=|V'+—-|-—=-—+—]z
2 a? p* 2 al p@

Al = Coefficient [eql3, x’]; Bl = Coefficient [eql3, y’];
Cl = Coefficient [eql3, z°];

Al +Bl +Cl // Simplify
0
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Crystal field for the f electrobns (the highest order = 6)

eq6 =
Series [Ve, {x, 0, 6}, {y, O, 6}, {z, O, 6}] //
FullSimplify [#, {a>0, b>0, ¢c>0}] & // Normal // Expand ;

g+l z!:+l ]

eq6l = Sum [xp y? 2" Coefficient [xyzqu , xP oy
h[p+q+x, 6] , {p, 0, 6}, {9, 0, 6}, {r, 0, 6}]

2 2 2 1 4 2 2 2
I i e e e DG
a b ¢ 2138 pd¥ 3
1 48 18 18 4 1 1440 450 450 6
— | T— 4+ o+ - | X+ ——— -0 - | X+
24 a5 b5 c5 720 a7 b7 c7
1/ 2 4 2\, 1/(24 24 6 )
- I - - — y + — - - —— + — X y +
2 a? p ol 4 a® b
1 72 540 90\ 4 1 (18 48 18\ 4
— |-+ - — Vi+— |—+—+— |y +
48 a’ b’ o7 24 \35 s &
1 (540 720 90\ , 4 1 450 1440 450\
— | - - = | Xy +—— |-+ -— |y +
48 a7 b7 c7 720 a7 b7 c7
1/ 2 2 4y, 1(24 6 24y , ,
— - -—=+ =z |[-— +—= - — | x°z°+
2 a? p ol 4 a® b>
1 (720 90 540\ 4, , 1 (6 24 24\ , ,
—_— |- - — ¢+ — | Xzt | = - - — zZ° +
48 a’ b 4 13° b ¢
1 /180 180 180\ , ) 1 90 720 540\ 4 -
el e vozir — |[-— -— +— |y z°+
g | a7 b ol 48 a7 b ol
1 (18 18 48\ , 1 (540 90 720\ , .
— + — 4+ — +— | -0 - | X"z +
24 \a5 p> & 48 \ a' b !
1 [ 90 540 720\ , , 1 450 450 1440\
— |-+ - |V zZ 4+ — |- - + z
48 \ a' b’ c’ 720 a’ b’ c’
Octahedral case (a=b=c)
eq7 =eqgbl /. {b>a, c»a}
6 7x4 3% 21%2 y2 45 x* y2 7y4
-+ + — - - +— -
a 2a’ 44’ 2ad 8a’ 2a’d
45x% vyt 3y®  21x%2z% 45x*z? 21 vy® z?
—_— + — - - - +
8a’ 44’ 2ad 8a’ 2ad
135x%y?z?2  45y*z?2  7z' 45x*z' 45y?zt 3 z°
- + — - - + —
2a’ 8a’ 2ad 8a’ 8a’ 44’

Then we have the expansion of the crystal field with n = 4 for 3d electron.

(1) Potential in the case of different a, b, and ¢
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2

V(r):Ze2[2+z+—
a C

—_—
AN
o S
\]

2 a3 b3 3 2 a3 b3 3 2 3 b3 3
1 8 3 3 1 3 8 3 1 3 3 8
T A e Y T
3 4 4 1 31 4 4 3 4 1 4
STt s *y? PR 2+ (—— ) ’x’]
(4.2)

(1) Potential in the case of @ = b, but ¢ being different from a and b (tetragonal field)

V(r)zZez[ivtva(—l3 ——13 )()c2 +y2 —222)+§(—45 +—35 )()c4 +y4 +z4)
a ¢ a c 4 a° ¢
51 1., 4 > 20 3.3 4,
——(—=—2)z" +6x ——(—=+—)r"]. 4.3
4(a5 CS)( y) 4(a5 c5) ] (4.3)

where
rP=xt+yt+ 2%

(iii)  Potential in the case of @ = b = ¢ (orthorhombic field)

V(r)= Zez[é + 27 ()c4 + y4 + 24) —%(xzy2 + yzz2 + zzxz)], 4.4)
a a

aS
or
V(r)zZez[évL3—55()c4 +y4 +z* —§r4)]. 4.5)
a 4a 5
S. p-electrons: quenching of the orbital angular momentum

5.1.  2p-electron wave functions

Frequently, the lowest orbital level, when split by a crystal field, is a singlet. Because
of'the large splitting, this is usually the only level populated. The orbital momentum is then
said to be quenched, since it will make no contribution to the magnetic moment when a
field is applied.

We now a simple model of quenching of the orbital angular momentum due to the
crystal field. The electron configuration is given by 1s?2s*2p' (15?25 has a closed shell).
According to the Hund’s law, we have L = 1 (degeneracy =2 L+1 = 3), S = 1/2 (degeneracy
=28+ 1=2). Then the total degeneracy is (2L+1)(25+1) = 2 x 3=6. There is one p-electron.
Suppose that this ion is surrounded by 6 negative ions located at (£a,0,0), (0,+5,0), and

(0,0,£c) with a>b>c>. There are three wave functions: px> , py>, and pz> given by
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(¥|p)y=xf (). (r|p,)=xf (). (r|p.)=2 (), (5.1)

with

(P.

p,)=(p,|p.)=(p.|P.)=0. (5.2)

__

=

Fig.8 Angular parts of the wavefunctions for (1) 2px, (2) 2py, and (3) 2p.

n=2,1=1(2p electron)

r
rexp(——za )
R21(r)= 2\/6(1 5/20 )
(1]

Y (0,4) = —%e"“’1 /% sin @

Y (0,9) =%\/%cos0 , (5.4)

Y 7(0,4) = %e’”’1 /% sin @

(5.3)
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Px> _ %[_Yllw’@jqfl1(6;’¢)]R21(r) :%\/%siné’cosqﬁRﬂ(l’) = x%\/g Rzlr(r)

(r

(rlp,) =i 11 (0.0) 1 @01 ()= %g sin Osin gR,,(r) = y%@ falt)
_y® L3 osg= L B R

<rpz>—Y1(e,¢>R21(r>—2\/;cose 22\/; i

with the radial wave function given by

(5.5)

f(r)_l\ﬁ B L™ g (5.6)
2\z r _4\/5 aOS/2 ' '

The energy is split because of the crystal field due to negative ions. W, > W, > W, , because

of Coulomb repulsion. Since c<a<b, one can find the longest Coulomb repulsion between
negative ions and electron, for the z-axis, for y-axis, and for the x axis, in order.

5.2 2p electron in the octahedral field
The effect of negative ions is expressed by a static potential V' (r) satisfying the

Laplace equation; V*V(r)=0. This V(r)is called the crystal field. Since V(-r)=V(r),
V' (r) for the 2p electrons (n = 2) can be approximated as

V(r)=—Ax"— By’ +(A+ B)z’, (5.7)

where A>B>0 (see the above discussion for the derivation).

Ze* 4 2 2

Gy
Ze* 2 4 2

B=—-"-(—+—-2), 5.8
2 a b c3) (5:8)
2

C:Z—e(—%—%+i3):A+B
2 a b c

V(r) satisfies the Laplace equation; V*V (r)=-24—-2B+2(A+B)=0
The matrix elements are calculated as (see the Mathematica)
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W, =(p,[V|p,) = -24a," 4
w,=(p,[P|p,)=-24a7B . (5.9)
W, =(p.[V|p.) = 24a,’z(A+ B)
Note that
(p.W|p,)=0. (p.J|p.)=0. (p,JV|p.)=0.... (5.10)

The perturbation theory (quantum mechanics) can be applied to the ground states which
are orbital-triplet states. As a result of the perturbation, these states are split into non-

degenerate orbital-singlet states. Then the matrix of ' under the basis of{ { px>, p y>, pz>}
is diagonal, such that

(p.JP|p) (pV|p,) (2P} (W, o o0

(p,[7lp) (2,)7p,) (pJPlp.)|=| 0 w0 0]

(p.Vlp.) (p.Wlp.) (p.V|p.)) \O 0 W
In other words,

Vip)=wlp).  Vlp,)=Wlp,).  V|p.)=Wlp.)

where the eigenkets are px> with eigenvalue W2, py> with eigenvalue W2, and pz> with

eigenvalue Wi3. If 4= B, then W, #W,. As we expect, the degenerate ground state is
separated into three orbital-singlet states; eigenstate

px> with the energy Wi, eigenstate
‘ py> with the energy >, and eigenstate

pz> with the energy W3.

Energy splitting due to a crystal field

W3
Orhital triplet
Spin douhlet
W2
W
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Fig.9 Schematic diagram of the energy splitting of 2p orbital under the tetragonal
crystal field.

5.3. Quenching of orbital angular momentum
A. Orbital angular momentum (quantum mechanics)
The matrix element of the orbital angular momentum can be calculated as follows,

L=Fxp. (5.13)
L|p,) =ih\py>, L. py> =-iflp,),  L|p.)=0

L|p)=0 . Llp)=itp.), . Llp.)=-itlp,).. (5.14)
Llp)y=-ilp.),  L|p,)=0, L,|p.)=ilp,)

Then we have

A A

(p L] p.)=(p,|L.|p,) = (p.|L|p.) =0
(p|Llp.)=(p,|L|p,)=(p.]L]p.)=0. (5.15)
(p.|L|p.)=(p.|L,|p,)=(p.IL,|p.) =0
(p,|L|p.)=in, (p.|L|p,)=-in,
(p.IL|p,)=in, (p,|L,|p.)=-ih, . (5.16)
(polLy|p.)=in, (p.|L,[p.)=~in

Note that
(LAX2 + iyz + izz)| px> = —ihiy|pz> + ihiz‘py> =21’ px>
(LP+L}+L2\p,)=27|p,) . (5.17)
(LP+L+L7)|p.)=21"p.)

The orbital angular momentum is zero (quenching of the orbital angular momentum).

B. Calculation of orbital angular momentum by Mathematica
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Orbital angular momentum of 2p electron

Lz :=2 (xD[#, y] ~yD[#, x]) &;
1
h

Lx := - (yD[#, z] -zD[#, v]) &;
1
h

Ly := — (zD[#, x] -xD[#, z]) &
1

zﬁx=xf['\/x2+y2+zz];W=Yf['\/x2+yz+zz];

zﬁz:zf[\/x2+y2+zz];

{Lz[yx], Lz[¢yy], Lz[¥z]} // Simplify
{jyhf{‘\/x2+y2+zz }, —jth{‘\/x2+y2+zz }, O}
{Lx[yx], Lx[¢y], Lx[¥z]} // Simplify

{O, Jizhf{ x2+y2+z2}, —jyhf{\/x2+y2+zz}}

{Ly[¥=x], Ly[¥y], Ly[¥z]} // Simplify
{—jzhf{ x2+y2+22}, 0, jth{ x2+y2+22}}

C. Theorem
If the state |‘//> is not degenerate, then the wave function <r|¢> should be real.

Suppose that

(rly) =p(r)= f(r) +ig(r), (5.18)
where fand g are real.

Hy (r) = Hf (r) + ig(r)] = ELf (r) + ig(r)], (5.19)
or

Hf (r) = Ef (r)

_ (5.20)
Hg(r) = Eg(r)]
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In other words, f(r) and g(r) are the eigenfunctions. This is inconsistent with the above
assumption. Then y/(r) is real.

y () =y(r). (5.21)
We consider the expectation

L

(wlL]y) = [dr{e|p) L{rly) = [ary Ly (). (5.22)

L=r><p=ér><V
I

" (5.23)
L =——rxV=-L
i
(Wltly) = [dry )Ly ) =-[arly Lyl =~y |ly).  (5.24)
Since L is a physical quantity (observable), we have
<l// L l//>* = <l// L l//> . (5.25)
Then we have
<l// L l//> =0 (the quenching of L). (5.26)
For the orbital singlet
<l// L 1//> =0. (5.27)
5.4. Zeeman splitting of the orbital energy levels
The orbital magnetic moment is given by
. L
W, =—Hg—- (5.28)
h
The perturbation due to the Zeeman effect is described by
. . L H -
HZeeman = _luL ’ H = _(_:LlB E) ’ H = ﬂBTLz * (529)

The total perturbation is
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A

H = H crysralfield + H Zeeman

. (5.30)
= — A%’ — B} + (4 + B)%’ +%L

where the potential energy is defined by

Iy A

=V =—A%* — By’ +(A+ B)%’

crysralfield

((Zeeman energy))

We assume that the new state is given by |1//> with the energy eigenvalue E.

Eigenvalue problem

5 HgH 7
<prp> E = (p.JL|p,) 0 (v} (0
< Py <Py"}\Py>—E 0 <py‘l//> =101,
0 0 (p.P|p.)-E \(Plv)) 0
(5.31)
or
Wi—E —igH 0 Y(plw)) (0
iwH Wy—E 0 | (p|w)|=]0]. (5.32)
0 0 W—E)N(p.lv)) (0

The eigenvalues are obtained as

1
Wy, IO, S ) £ OF, + W) +4u, H ]

5.5  Mathematica program: eigenvalue problem

We calculate the above eigenvalue problem using the Mathematica.
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Effect of the crystal field on the energy level of the 2p electrons (n =2, | = 1) wave functions

Clear["Global *"];
rwave[n , 7 , r ] :=
1

V(n+7)!
3 r
[21+/ a0”""2 @08 n 2 'V (n-/-1)1
2r
LaguerreL[—1+ n-7/,1+27, —]),
a0 n

wpx=

rwave[2, 1, r]

[ 1
[— E SphericalHarmonicY[1l, 1, 6, ¢] +
1
E SphericalHarmonicY[1l, -1, 6, ¢]1| //

FullSimplify[#, ¢eReals] &;
ypy =

rwave[2, 1, r]

’ 1
[1'1 E (SphericalHarmonicY[1l, 1, 6, ¢] +

SphericalHarmonicY[1l, -1, 6, d)])] // FullSimplify[#, ¢eReals] &;

Yypz = rwave[2, 1, r] SphericalHarmonicY[1l, 0, 6, ¢] // Simplify;
rulel = {x > rSin[6] Cos[¢], y > rSin[6O] Sin[¢], z > rCos[O]};
V=-Ax®?- By2 + (A +B) z? /. rulel // Simplify;

J[1, 1] =ypxV yYpx; J[1, 2] =yYpxV yYpy; J[1, 3] = ypxV Ypz;
J[2, 1] =ypy V ypx; J[2, 2] =ypy V ¥py; J[2, 3] = Yypy V Ypz;
J[3, 1] =ypzV Yypx; J[3, 2] =ypz V Ypy;

J[3, 3] =ypzV yYpz;

Hl[p , g1 :=
Integrate[Integrate|Integrate[2xz?Sin[0] J[p, ], {4, 0, 27}],
{e, 0, 71'}] , {r, 0, oo}] // Simplify[#, Re[a0] > 0] &

H12 = Table[Hl[p, q], {p, 1, 3}, {a, 1, 3}]

{{-24ma0°n, 0, 0}, {0, -2420°B =, 0}, {0, 0, 2420° (A+B) n}}

H12 // TableForm

-24 a0 0 0
0 -24a0%°Bn 0
0 0 24 a0? (A+B) 71t

H13 = Eigensystem[H12]

{{-24na0°n, -24a0°B 7, 24a0° (A +B) 1},
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}
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El = H13[[1, 2]]; E2 = H13[[1, 1]]; E3 =H13[[1, 3]];
{E1,E2,E3} /. {A>2,B>1} //N

{-75.3982 a0%, ~150.796 a0%, 226.195 aOZ}

Zeeman effect

We consider the eigen value problem
A={W1,-i uB H,0}.{i #B H, W2,01,{0,0,W3}}

HH = {{Wl, -2 yBH, 0}, {L uBH, W2, 0}, {0, 0, W3}}

{{Wll _j-HUBI O}I {]']_HUB, W2, O}I {Or Or W3}}

HH // MatrixForm

Wl -iHWuB O
iHuB W2 0
0 0 W3

eql = Eigenvalues[HH]

1
{W3, 5 (W1+W2—\/W12—2W1W2 +W22+4H2uB2),

1

> (W1+W2+\/W12—2W1W2 +wW2? + 4 8% uB? )}
rule2 = {Wl > El, W2 - E2, W3 > E3};
rule3={uB->1,A>2,B>1, a0->1};

W1l =eql[[2]] /. rule2 /. rule3 // N;
W22 = eql[[3]] /. rule2 /. rule3 // N;
W33 =eql[[1]] /. rule2 /. rule3 // N;

Plot[Evaluate[{W1ll, w22, W33} /. a0->1], {H, 0, 100},
PlotStyle » {{Hue[0] , Thick}, {Hue[0.4], Thick}, {Hue[0.8], Thick}},
Prolog -» AbsoluteThickness[1.5], PlotPoints -» 100,
Background - GrayLevel[0.7], AxesLabel -» {"H", "Energy"}]

Fig.10 Zeeman splitting of the energy level W1 and W>. We assume that ao = 1,
m=1,A=2and B=1.
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6.

6.1.

3d-electrons in the crystal field
3d-electron wave functions
We now consider the origin of the splitting of the orbital levels by the crystal field.

Suppose that an ion with only one 3d electron (n = 3 and / = 2). It forms wave functions
made up of certain combinations of the 3d hydrogen wave functions. The linear
combinations we choose are

or

o1 2 _y2
Wy = —l—ﬁ[Yz (0,9)-Y,7°(6,9)]
o1 1 -1
V.. —l—ﬁ[Yz (0.9)+Y, (6,9)]
1 1 oyl
sz__\/E[Yz (Ha¢) Yz (Ha¢)] 5

Ve = 0.0+ 1(09)

W322 —r2 = }/20 (H’ ¢)

) =ly) =i lli=2.m=2)~[1 =2.m=2))
) =|w..) :i%[2,1>+ 2,-1)]

) =l =75 (121) -[2-1)

=l =75 122)+[2-2)

lws) = ‘Wsztr2> =[2,0)

(6.1)

(6.2)

Note that the notation of the spherical harmonics used here is the same as that used in the
Mathematica.

((Mathematica)) Spherical harmonics ¥," (6, ¢)
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Clear["Global *"];
Table[{2, m, SphericalHarmonicY[2, m, 6, ¢]},
{ml _2/ 2/ 1}] // TableForm

Le?i¢ [ 12 sin[e]?
4 2 7T
2 -1 / Cos|

2 -2

] Sin[©]
1 Bl 2
2 0 .2 (-1 +3cCos[6]?)
2 1 Leid |12 cos[O] sin[6O]
2 27
2 2 Le?2i® |12 gsin[o)?
4 27
Table 1 Spherical harmonics {/, m, ¥,"(60,¢)}. [=2.m=2,1,0, -1, -2.

The radial part of the wave function (n =3 and / = 2) is given by

2 ) r
R =2./— exp(——). 6.3
3,2(1") 15 81ao7/2 r p( 3610) ( )

There are two types of orbital states: the deorbits  dyy, dy-, d-x, the dy orbits: dx2.,2 and
d, . .. The complete wavefunctions are

given as follows.

de(ty,)

2xy 2 1 r
ra, )= exp(— )\/gxy
i) 81a, ) Tor \/_81 72T 3,
2yz r ,
<r‘dyz>:81 [ / 7 814, 7/26Xp(— )\/gyz
0
2zx
(rld..) PR )F \/_81 7/zexp( )x/gzx
0
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1 rooxt =y 2 1 r «/g(xz—yz)
rid, ,)=——=5exp(— = exp(—
< v > 81a,’"” p 3a0) 2z A6r 8la, " p 3a0) 2

(6.4b)

ro 3z 2 1 ro 3z2 =12

<r‘d 2 2> = %exp(— ) = —exp(——)
e 81la, 3a,” ~é6r vor 8la, 3a, 2

dxy>='//1 ) <r‘dyz>=!//2 ) <r|dzx>=V/3 ,

d, 7y2> =y,, <r‘d3zzﬁz> =y, . The complete wavefunctions are given by

For convenience, we use the notations: <r

(r

Fig.11 Angular parts of the wavefunctions for (1) dy, (2) dz, (3) dx=, (4) dxz,yz ,
and (5) d,. ..

6.2.  Orthorhombic crystal field
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We consider the octahedral field (cubic). There are 6 negative ions around one 3d
electron at (0,0,0). The negative ions are located at (+a,0,0), (0,£a,0), and (0,0,2a). The

Coulomb repulsion energy (positive) is large for the dy orbitals [for example, dxtyz ].
Suppose that six negative ions X with charge -e are located on the x-, y-, and z- axes at

a distance a from the origin. When r<a, the electrostatic potential energy due to the ligand
field is given by

V(r)y=V, + D()c4 + y4 +z* —%r“) . (6.5)
with
2 2
VO:6Ze andD:3SZSe
a 4a

This is an explicit expression for the cubic ligand field in the point charge approximation.
The symmetry of the Hamiltonian for the 3d electron is now lowered from spherical to
cubic because of the presence of the ligand field.

The electron charge cloud distributions of the orbitals are sketched in Fig.7. It is easier
for a 3d electron cloud to avoid the charge cloud of the neighboring negative ions. The
orbitals (de ) will then have a lower energy than for the orbitals (dy).

(1) Charge distribution of d,, in the x-y plane

Fig.12(a) Representation of dy, orbit in the x-y plane.

The Coulomb repulsion energy is small for the d, because of the existence of the
neighboring negative charges located at (+ a, 0, 0) and (0, £ a, 0).

(1) Charge distribution of d(yz) in the y-z plane
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Fig.12(b) Representation of d, orbit in the y-z plane.

The Coulomb repulsion energy is small for the d,. because of the existence of the
neighboring negative charges located at (0, @, 0) and (0, 0, + a).

(i)  Charge distribution for d.. in the z-x plane

(3%
ﬂ z
%

Fig.12(¢) Representation of d- orbit in the x-x plane.

The Coulomb repulsion energy is small for the d.. because of the existence of the
neighboring negative charges located at (0, 0, + a, 0) and (£ g, 0,0).

(iv)  Charge distribution of dxtyz in the x-y plane

(ay¥

0.2

0.2

Fig.12(d) Representation of d , , orbit in the x-y plane.



The Coulomb repulsion energy is large for the dxz,yz because of the existence of the

neighboring negative charges located at (+ 4, 0, 0) and (0, £ a, 0).
(V) Charge distribution of d N in the z-x plane
(5K

0.1
/W—\
z

-0. -0.2 0.2 .4
=0705

-0.1

Fig.12(e) Representation of &, , , orbit in the z-x plane.

The Coulomb repulsion energy is large for the d,, ., because of the existence of the

neighboring negative charges located at (0,0,% a).

6.3. Wave function of (3d)! electron in the orthorhombic field
Matrix element is defined by

(iI7]5) = [(rld @) v )(r|d() (6.6)
_4Dg 0 0 0 0
0 —-4Dg 0 0 0
0 0 —4Dg 0 0 6.7)
0 0 0 6Dg 0
0 0 0 0 6Dg

We have eigenvalues and eigenfunctions

E =-4Dq for dxy>’ dy2>’

d.), (6.8)
and

E =6Dgq for ‘dxz,yz >,

d.. .). (6.9)
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-4Dq
de
Fig.13 Splitting of the energy level (°D) of ground state of free (3d)' under the
octahedral field.

where the energy difference between two levels is called 10 Dg,

g =—(r*) = 4864, (6.10)

105 ° '
(r*)=[r*rdr|Ry ()] =2.5515x10%a," . (6.11)

0

((Note))
We have some comment on the independence of the djy~orbital wave function (there are
only two independent states).

2 2
r . x -
) Y

1
d, ,)=——5exp(—
"’y> 8la,"” o 3a,” \2rx

(6.12)

1 r 3z -7 1 ro 32 —(x*+y*+2%)
r|ld ), o) = ex = ex
< ‘ 3z —r> 81a07/2 p( 3a0) \/a 81ao7/2 p( 3610) \/a
(6.13)
or
1 ro 2z —(x7+y?%)
rld,. )= exp(——)
< ‘ 3z°—r > 81a07/2 p 3a0 \/a (6 14)
1 ro (z° —x2)+(zz—y2)' '
= exp(———)
8la, P73, Jor

There are two independent states since
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(eld . )+ (rld . )+ (r]d._.)=0, (6.15)

dyz’zz> . (6.16)

6.4. Wave function of (3d)' electron in the tetragonal field
A. Eigenvalue problem
We now consider the case where a = b # c. The static potential energy is given by

Vr):Zez[i+g+A(x2+ P22+ D(xt +yt+zh)
PR Y Y

33 4 (6.17)
+0(z* +6x7y?) - = (—+—)r'].
4 qa c
where
1 1 5 4 3
A=(—-—), D=—(=5+-5)>0,
a c 4 q c (6.18)
5.1 1 33 4 ' '
=——(——-—), =—(—+—2)>0.
0 4(a5 cs) ¢ 4(a5 cs)

The sign of A and Q changes depending on the ratio of ¢/a. On the other hand, D and ¢ are
always positive. Here the matrix element is defined by

w, 0 0 0 0
O W, 0 0 o0
{71y = [(ela@) v)rla(p)=| 0 0 W, 0 0 |. (6.19)
0o 0 0 W, 0
o 0 0 0 W,
Ze’ ) 4
W, =2 [4c+a(2+72ca,> A+1215¢a," 11D +190 ~21£))]
ca

2

W, = Zi[4c +a(2+9ca,” (-44+135a, (11(D + Q) - 21¢))]
ca

2
Zi[4c +a(2+9ca,” (~44+135a,(11(D + Q) - 21¢))]
ca 0
2

W, =2 [4c +a(2 + T2ca,’ A +1215ca, (15D + 70 - 21¢))]
ca

W=

2
W, = Zi[4c +a(2+9ca,” (-84 +405a,” (5(D + Q) - 7¢))]

ca
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Here we use the perturbation theory (degenerate case) (see the Mathematica program
below).

B. Eigenvalue problem
The eigenvalues

E, =W, for d,
E, =W,, for dy,,
E, =W, for d,,
E, =W, for dxz,yz ,

and
E =W ford, , ..
We note that

E,=FE,=FE +10Dq,
E =E,=E,

in the limit of 4—0, 0—0, and £—0. In the general case,

E4—E1:10_& ES_E1:10_ 84 100
Dyq D Dq 27a,’D D

E-F __ 2124 _200 E—F, 0 (E> and E3 are degenerate).
Dq 9a,D D Dq

Es—E, 84 N 200
Dq 27a,’)D D

We now make a plot of the energy levels (normalized by Dgq) as a function of c/ao, where
alap 1s fixed as a parameter and ao is the Bohr radius. For convenience we choose a/ao =
10 (a=10a0=5.3 A).
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Fig.14 Energy levels for the tetragonal case, as a function of c/ao. a/ao = 10. [dxy
(green), dy, (red), dox (red), d . . (blue), and d,, . (purple). The

energy level of dy, and d.; (degenerate) is higher than that of d, for c<a,
while the energy level of dy, and d.. (degenerate) is lower than that of d,
for c>a. The energy level of d, , . is higher than that of d , . for c<a,

while the energy level of d, . . is lower than that of d , . for c>a.

d(3z2-12)

d0-y2) &
S 2.2
d(3z2-12) s
doa)
d@9 de — doz)
i a2
Cubic (octahedral) tetragonal Cubic (octahedral) tetragonal
c=a=b c>a=b c=a=h c<a=h
Fig.15 Energy diagram for (3d)" ion in the octahedral and tetragonal cases for (i)

c>a=b.(i))c<a=bh.
C. Mathematica program: Eigenvalue problem

Using the Mathematica program we solve the eigenvalue problems. The result obtained
is shown in Fig.14.
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Wavefunctions for one 3d electron in the tetragonal case
Clear["Gobal "] ;
Needs["VectorAnalysis "];

SetCoordinates[Cartesian[x, y, z]]-

V =
2 (4 2 2 2 2 4 4 4
Z el (—+—+A1(x +y —22)+D1(x +y +z)+
a ¢
Q1 (z4+ 6x2y2) -€l (x2+ v+ zz)z);
1 1 20 15 5 5
rulel:{Al—)(———],Dl—)( + ],Ql—)-(—_—),
a® o2 4a°> 4cd 4a°> 4cd

9 12
el—)( + )},
4a°> 4cd

rule2 = {x > rSin[6] Cos[¢], y > r Sin[6] Sin[¢], z > rCos[O] };

V1=V /. rule2 // TrigFactor;
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wave functions of d-orbitals

r
@ 320 r? sin[6]2Sin[2 ¢]

Y[1] = ;
81a0”2v 2
¥I2] = @ 320 r28in[2 6] Sin[¢] . 3] = @ 320 r2Cos[¢] Sin[2 6] .
81 a0’/2vV2n 81a0”2V2nx
e T r2 Cos[2 ¢] Sin[6]>
via] = [2 ¢] [e] ;
81a0’242nx
@ 320 r?2 (1+3Cos[26])
Y[5] =
162 a0"2V 6
e 3a0 r? (1+3Cos[20])
162 207?67

Rnl(r): radial part of wave function; n= 3, | = 2.

r
2. % @ 3a0 r?
15

rwave[3, 2, r] =
81 a0’/?
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Average of r’

rdav = Integrate[ r! r? rwave[3, 2, r]2, {r, O, oo}] //
FullSimplify[#, Re[a0] > 0] &

25515 a0’

2 _ 4
=< <r*>
q1 105

2
g4 = — rdav // Simplify
105
486 a0"
Average of r?

r2av = Integrate[ r? r? rwave[3, 2, r]2, {r, O, oo}] //
FullSimplify[#, Re[a0] > 0] &

126 a0’

Matrix element calculations

J[lp , g1 :=¢[p]l V1 ¥[qg];

Norml[p , q ] :=¥[p] ¥[q]
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Average of r’

rdav = Integrate[ r! r? rwave[3, 2, r]2, {r, O, oo}] //
FullSimplify[#, Re[a0] > 0] &

25515 a0’

2 _ 4
=< <r*>
q1 105

2
g4 = — rdav // Simplify
105
486 a0"
Average of r?

r2av = Integrate[ r? r? rwave[3, 2, r]2, {r, O, oo}] //
FullSimplify[#, Re[a0] > 0] &

126 a0’

Matrix element calculations

J[lp , g1 :=¢[p]l V1 ¥[qg];

Norml[p , q ] :=¥[p] ¥[q]
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14

30 01 8 Al 1001
{10- 10 - -
27 a0” D1 D1
2 Al 2001 8 Al 20 Ql}

- 14 r - +
9a0? D1 D1 27 a0% D1 D1

rule3={a-»ala, c-alp};

ES5
E50 = /. rulel /. rule3 // Simplify;
DO g4
E4
E40 = /. rulel /. rule3 // Simplify;
DO g4
E3
E30 = /. rulel /. rule3 // Simplify;
DO g4
E2
E20 = /. rulel /. rule3 // Simplify;
DO g4
El
E10 = /. rulel /. rule3 // Simplify;
DO g4

Energy = {E10, E20, E30, E40, E50};

Energy diagram
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f1l = Plot[Evaluate[Energy /. a » 10], {3, 9, 11},
PlotStyle » Table[{Thick, Hue[0.21i]}, {i, O, 5}],
Background - GrayLevel[0.5],

AxesLabel -» {"c/ap", "Energy/Dg"}];
£f2 = Graphics[{Text[Style["E;", Black, 12], {9.2, 7.8}],
Text[Style["E;,E;", Black, 12], {9.2, 9}],
Text[Style["E,", Black, 12], {9.2, 17}],
Text[Style["Es;", Black, 12], {9.2, 19}1}1-
Show[fl, £2]

D. Quenching of orbital angular momentum
For the orbital singlet, the average of the orbital angular momentum is equal to zero.

Lly,)=-2itly.) ) =ity L|y)=—itly,)
Lly,)=-inly,) Lly,)=itlly)+ 3w L|w,)=inly,)
Llys)=itly,) . Llws)=-ifly,) o Llys) =in(ya) = 3lys).
iz 1//4> = 2ih|1//1> ix !//4> = —ih|!//2> ﬁy 1//4> = —ih| !//3>
Llys)=0 L) ==iN3Hy,) L) = in3|y,)

(6.20)
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vi)=lva) +ilvs) Vi) =Jva)+ilvs)
z> —|W1>+ZIW4>+N§I%> z> [y + i) +i3lys)
) =—ilyn) - I'//4>+x/§|!//5> ) ==ilw)+wa)—V3lws) . (6:21)
4> _l|'//z> |W3> 4> _l|'//2> |W3>
vs) ==iV3y) —\3lys) vs) ==iv3lws) +3lys)

<Wii’z ‘//1‘>:0

(w|L]w)=0, y=61y,), (=1-5. (6.22)

<Wii’yl//i>:0

E. Mathematica program

Using the Mathematica we show the formula of the orbital angular momentum in
quantum mechanics.

((Mathematica-1))
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Orbital angular momentum of 3d electron

Clear["Global "] ;
h

Lz := — (xD[#, y] -yD[#, x]) &;
i

Lx := I—I (yD[#, z] -zD[#, y]) &;
il

Ly :
l#l:'\/?xy f[‘\/x2+y2+zz];d/2= V3 yzf[‘\/x2+y2+zz];
w3='\/?zx f[‘\/x2+y2+z2];
alf4=§(x2—y2) f[",x2+y2+z2];
w5=§(322—(x2+y2+z2))f[‘\/x2+y2+zz];
{Lz[y1], Lz[y2], Lz[¥3], Lz[Yy4], Lz[¥5]} // Simplify
{—Ji\/?(Xz—y2>ﬁf[\/xz+y2+z2],

3XZﬁf[‘\/x2+y2+z ],l\ryzﬁf[‘\lx +y +22]
ZI\Exyﬁf[\/x +y +z2] O}

{Lx[¢1l], Lx[y2], Lx[Yy3], Lx[¢4], Lx[¢¥5]} // Simplify
{iﬁxzﬁf[ X2+y2+22], —iﬁ(y2—zz)ﬁf[ X2+y2+z2],
ey e,

i3 yene[V eyt e ], sivane[Veleyiea? )]

{Ly[¥1], Ly[¥2], Ly[¥3], Ly[¥4], Ly[¥5]} // Simplify

(i3 yzne[Vuey?ea?],
3 xyﬁf[m], iV3 (x2—z2)ﬁf[m],
3 xzﬁf[m], 3ixzﬁf[m”

I.—I (zD[#, x] -xD[#, z]) &;
il

3 xyhf
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((Mathematica-2))
L = 2 matrix element in quantum mechanics

conjugateRule = {Complex [re , im ] :» Complex [re, -im]};
Unprotect [SuperStar ];
SuperStar /: exp * := exp /. conjugateRule ;

Matrx element of orbital angular momentum L = 2

1
Jx[/ , n , m] :=5'\/(/—m) (/ + m+1) KroneckerDelta [n, m+1]+

1
EV(/+m) (#/ -m+1) KroneckerDelta [n, m-1];

JY[/_I n_, m_] o=

1
-3 iV (/-m) (/ +m+1) KroneckerDelta [n, m+1] +

1
EiV(/+m) (# -m+ 1) KroneckerDelta [n, m-1];

Jz[/ , n_, m_] := mKroneckerDelta [n, m];

ILx = Table [Jx[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];
Ly = Table [Jy[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];
Lz = Table [Jz[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];
Ip =Ix +1ily; Im = Ix - i Ly;

I1 = IdentityMatrix [5];
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Column matrix of 1, ¥2, 3, y4, y5

i i
$[1] =-— {11 Ol Ol Ol _1}; $[2] = = {Or 11 Ol 11 0};
V2

V2

1 1

$[3] == {Ol 1, Ol -1, 0}; $[4] = {11 Ol Ol Ol 1};
V 2 V 2

III[S] ={OI Ol 1/ Ol 0};

Table [¢[i]*.Ix.¥[1], {i, 1, 5}]

{0, 0, i, 0, 0}
Table [z[r[i]*.Lx.z[f[Z], {i, 1, 5}]

{fo, 0,0, i, iV 3}

Table [¢[i]*.1x.¢¥[3], {i, 1, 5}]

{-1, 0, 0, 0, 0}

Table [¢[i]*.1x.¥[4], {i, 1, 5}]

{0, -1, 0, 0, 0}

Table [¢[i]*.1x.¥[5], {i, 1, 5}]
{o, -iv'3, 0, 0, 0}
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Calculation of Ly.y(i]
Table [tlf[i]*-LY-tlf[llf {i, 1,

{0, -1, 0, 0, 0}

Table [¢[i]*.Ly.¥[2], {i, 1,

{1, 0, 0, 0, 0}

Table [¢[i]*.Ly.¥[3], {i, 1,

{0, 0,0, 1, -i1V3}

Table [¢[i]*.Ly.¥[4], {i, 1,

{0, 0, -1, 0, 0}

Table [¢[i]*.Ly.¥[5], {i, 1,

fo, 0, iV3, 0, 0}
Calculation of Lz.y(i]

Table [z[r[i]*.Lz.z[r[l], {i, 1,

{0, 0, 0, -21, 0}

Table [z[r[i]*.Lz.z[r[Z], {i, 1,

{0, 0, -1, 0, 0}

Table [z[r[i]*.Lz.z[r[B], {i, 1,

{0, 1, 0, 0, 0}

5}]

5}]

5}]

5}]

5}]

5}]

5}]

5}]
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Table [z[r[i]*.Lz.z[r[4], {i,

[y
~

5}]
(21, 0, 0, 0, 0}

Table [¢[i]*.Lz.¥[5], {i, 1, 5}]
{0, 0, 0, 0, 0}
Calculation of L+.y1i]

Table [¥[i]*.Ip.¥[1], {i,

[y
~

5}]
{0, 1, 1, 0, 0}

Table [¥[i]*.Ip.¥[2], {i,
{-1, 0,0, i, iV3)}

[y
~

5}]

Table [¢[i]*.Ip.¥[3], {i, 1, 5}]
{-i, 0, 0, -1, V3}

Table [¢[i]*.Ip.¥[4], {i, 1, 5}]
{0, -i, 1, 0, 0}

Table [¥[i]*.Ip.¥[5], {i,

fo, -ivV'3, 3, 0, 0}
Calculation of L-.¢fi]

[y
~

5}]

Table [¢[i]*.Im.y[1], {i, 1, 5}]

{0, -1, i, 0, 0}

Table [¢[i]*.Im.y[2], {i, 1, 5}]
{1, 0,0, 1, iV3}

Table [¢[i]*.Im.y¥[3], {i, 1, 5}]

{-i, 0,0, 1, V3}

Table [¢[i]*.Im.y[4], {i, 1, 5}]

{0, -i, -1, 0, 0}
Table [¢[i]*.Lm.y[5], {i, 1, 5}]
fo, -iv'3, V3, 0, 0}
7. The energy diagram of Cu”* with (3d)° electron configuration: Rule-1
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Here we consider the energy level of (3d)° for Cu®'. There are nine electrons, i.e., one
short of filled 3d shell, where (3d)’ = (3d)!° + 1 hole (positive charge)

d{yz)

docd-y2) d(3z2-r2)
Cubic {octahedral) tetragonal Cubic {octahedral) tetragonal
t=a=h c=a=h c=a=h c=a=h
Fig.16 Energy diagram for (3d)’ in the octahedral and tetragonal cases for (i) ¢ >

a=b.(i))c<a=h.

In the (3d)’ electron configuration, we have (3d)’: 25+1 = 2, 2L+1 = 5 (L = 2). The
ground state is a Kramers doublet. Since S = 1/2, there is no single ion anisotropy (see 12.1
for detail). A full shell of electrons has a charge cloud which is spherically symmetric so
that removal of one electron leaves a distributed charge deficiency coincident with the
space charge of the electron moved. This gap or “hole” behaves like a single positively
charged electron.

For the (3d)’ ion in an octahedral crystal field, the argument therefore proceeds as for
3d" except the de and dy levels will now be reversed in the energy level diagram because
the ion has a lesser energy when the lobes of the positive hole’s wavefunction are directed
towards neighboring negative ions rather than between the ions. In some cases the
derivation from regularity might arise spontaneously from the crystal-field effect
themselves because, if the ground-state in a regular field is orbitally degenerate, slight
distortion of the environment can lower the ground-state energy and at the same time
remove some degeneracy, pushing some levels up and other down. Both the doubly
degenerate ground-state and the triply-degenerate level are split into two. If the distortion
in the z direction, the d(yz) and d(zx) states of the triplet remain symmetrically disposed
and, though displaced upwards in energy, they remain degenerate. The d(xy) state, on the
other hand, is displaced downward, in energy, and the center of gravity of the triplet
remains unchanged to the first order. The d(3z%-7*) and d(x*> — )?) states of the unperturbed
ground-state are not symmetrical with respect to the z-axis and are separated by the
distortion, d(3z>-7*) becoming an orbitally non-degenerate ground state.

In conclusion, The energy diagram of (3d)’ and (3d)! configuration are inverted in
relation to each other because (3d)° may be treated as a (3d)' positive hole in a filled (3d)!°
shell.

8. Energy diagram of (34)" electron configuration
8.1. Rule-2

Using the Hund’s rule and the energy levels of (3d)' electron configuration, we
consider the ground state of the (3d)" (n>2) electron configuration.
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(3d)’ (3d)°
The ground state of an ion with a half-filled shell has an orbital moment L = 0, since
all the 3d orbital states are singly occupied. The additional electron in the 3d° therefore
leave the ion in a D state just as for a 3d' configuration, and the crystal-field levels are the
same as for 3d".
Splitting in the energy-level diagram of the ground state of 3d" ion due to octahedral
fields and tetragonal fields.

(3ad)’ (3d)’
(3d)° (3d)°
(3d)° (3d)’
(3d)' (3d)°

((Difference appears when spin-orbit perturbations are concerned.))

8.2.  Ground state for (3d)" electron configuration (n>1)
We assume that the Hund’rule is valid for n>2: V,, >V, (weak field case), where

V. is the electron-electron interaction and Ve, is the crystal field.

(1)

I

_.—

Fig.17(a) Ground state of (3d)!: orbital triplet, where the red circle denote electron
up-spin state. dé&'

(i)

Fig.17(b) Ground state of (3d)*: orbital triplet. d&
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(iii)

Fig.17(c) Ground state of (3d)*: orbital singlet. d&’. The quenching of the orbital
angular momentum

-———
_.—'

(iv)

Fig.17(d) Ground state of (3d)*: orbital doublet. The possibility of Jahn-Teller effect.

de'dy
-
_.—

Fig.17(e) Ground state of (3d)’: orbital singlet. d£’d)”. The quenching of the orbital
angular momentum

———
_.7

e

)

(vi)

L 4

Fig.17(f) Ground state of (3d)°: orbital triplet. ds*dj?. The red circle and blue circle
denote electron up-state and down-state.
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(vii)

Fig.17(g) Ground state of (3d)’: orbital triplet. d&°dy”.
(viii)

o

———0

Fig.17(h) Ground state of (3d)®: orbital singlet. d&®d)”. The quenching of the orbital
angular momentum

(ix)

@ oo
@ & —@

Fig.17(i) Ground state of (3d)°: orbital doublet. ds°dj’. The possibility of the Jahn-
Teller effect

8.4.  Excited states for (3d)* electron configuration

We consider the excited states of the (3d)? electron configuration. We take into account
of only the Hund’s first law (exchange interaction) (parallel spin electrons are occupies
from lowest energy).

(1) Ground state: orbital triplet. The degeneracy is 3Ci1 =3
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@ ®
— & @ S
—— —— —O—
Fig.18(a) Ground state of (3d)* electron configration (one-electron model).

(i) First excited state. The degeneracy is 2Ci 3C1 =2x3 =6

Fig.18(b) Excited state of (3d)? electron configuration (one-electron model).

(ii1) Second excited state. the orbital singlet.

@
_.7
(Be)<
Fig.18(c) Second excited state of (3d)* electron configration (one-electron model).

In Summary we have the following energy diagram for (3d)*. Note that when the
Hund’s second law is also taken into account, the six degeneracy of the first excited state
is split into the two triplet states.
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r4

Hundi 1st law Hundi 2nd law

Fig.18(d) Energy diagram of (3d)? electron configuration (two-electrons system).
I}: the ground state (orbital triplet), /5: the first excited state (orbital
triplet), 7>: the second excited state (orbital singlet).

8.5.  Excited states for (3d)’ electron configuration

Ground state Orbital triplet: 3Ci=3
First excited state 6 states (splitting into two orbital triplet due to the Hund’s 2™ law)
3C1x2C1 =6

Second excited state Orbital triplet. 3C; = 3.

_ -

S — —

_— _—
Ground state Firsy excited state Second excited state

Fig.19 (a) Ground state, the first excited state, and the second excited state of (3d)*
electron configuration (one-electron model).

In summary we obtain the following energy diagram
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Iy

2

Hundi 1st law Hundi 2nd law
Fig.19(b) Energy diagram of (3d)’ electron configuration (three-electrons system). /3
(orbital singlet), 75 and 73 (orbital triplets)

8.5.  Excited states of (3d)' electron configuration

Ground state Orbital triplet 3Ci = 3)
Excited state Orbital doublet (2C; = 2).

Ground state

Excited state

Fig.20(a) Ground state and excited states of (3d)' electron configfuration (one
electron model)

In summary, we have
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3

(3!

I's

Fig.20(b) Ground state and excited states of (3d)! electron configuration. The
energy levels are the same as shown in Fig.20(a).

8.6.  Excited states of (3d)* electron configuration

Ground state Orbital doublet. 2C1=2.
Excited state Orbital triplet 3C1 = 3.
@
Ground state
— e
oy
®
_.—
Excited state
®
Fig.21(a) Ground state and excited states of (3d)* electron configuration (one

electron model)

r's
(ad?

'3

62



Fig.21(b) Ground state and excited states of (3d)* electron configuration (four
electrons system).

8.7.  Energy diagram: application of rule-1 and rule-2
Crystal field energy levels for orbital electrons in the octahedral (cubic) and tetragonal
fields have five symmetry types called irreducible representations.

Singlet A1 (1),
singlet Az (17),
doublet E (I3),
triplet T (13),
triplet 1> (15).

One often uses the notation A1g, T2g, /3¢, and so on, where g stands for gerade and means
that the wavefunction is asymmetric under inversion.

. -
rule-1

I's

r3

(303

(3d)8

< »-
rule-1

Fig.22 Energy diagram of (3d)" (n =1, 2, 3, 4) with the rule-1 and rule-2. /3 and
I5 triplets can be represented by a fictitious orbital angular momentum.

9. Jahn-Teller effect

We now consider the energy diagram of Cu?" for the (3d)° electron configuration. The
energy level of Cu®" consists of ground state (orbital doublet 73, dy) and the excited state
(orbital triplet 75, de) in the octahedral field (c = a = b). The ground state is split into the
two orbital singlets [d(x* — y*) and d(3z> — #?)] in the tetragonal field, as a result of the
lattice distortion (c>a = b). Here the energy level of d(x* —?) is lower than that of d(3z* —
). In this case, there are two contributions to the total energy. One is the energy loss due
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to the lattice distortion (the increase of the distance c). The other is the energy gain due to
the lowering of the energy level of the ground state. If the energy gain is larger than the
energy loss, a spontaneous displacement occurs (Jahn-Teller effect).

10.  Low spin and high spin states

We consider the case of Fe**. Isolated Fe?" has (3d)° electron configuration. (3d)’ has
five parallel spins (up). The remaining one electron for 3d has a down-spin, and takes 1 =
2 according to the Hund rule (S =2, L =2).

((Weak crystal field))

When Fe?" is a part of FeO, the orbital of the remaining one 3d electron is influenced
by 6 O*, or one 3d electron is located in the octahedral crystal field. In this case, the energy
level splits into the de and dg levels. 1(3d) electron occupies the energy level of de (down-
spin). In this case we have S = 2. We call this state as a high spin state. This is the case of
weak crystal field that the Hund field Vy is larger than V.

((Strong crystal field))

What happens when the crystal field is strong (Ve>Vh). In this case all 6 states in the
de are occupied by 3 up-spin states and 3-spin down states since Ve>Vn. Then we have the
S =0 (we call ths low spin state).

11. Spin Hamiltonian of spin systems with the orbital singlet as a ground state
11.1. Pryce spin Hamiltonian

Now we apply the perturbation theory (degenerate case) where the orbital ground state
is singlet.'® The Hamiltonian is described by

A A

H=H +H', (11.1)

where H . 1s the unperturbed Hamiltonian of the system under the octahedral crystal field

The perturbation H' is given by
H'=L-S+ u,(L+2S)-H, (11.2)

where the first term is the spin-orbit interaction and the second term is the Zeeman
energy. L and S are the operators of the orbital and spin angular momentum in the

quantum mechanics. We now transform H' into the so-called spin Hamiltonian by a
method proposed by Pryce, where the orbital dependence is projected out.

Let us evaluate the expectation value of H' fora nondegenerate ground state (orbital
singlet | Y, > 2 To the second order perturbation for the non-degenerate case (see the

Appendix for the perturbation theory)
Here

(¥, | H'[,) = (¥ | AL S + g1, (L +28) - H|'¥, ) = (¥, | 4,(28) - H| ¥, ) = 21,8 - H
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(T, 7' || ¥, ) = (T, ' |AL - S + g, (L +2S) - B, )
= AS (T 7'|L|¥o) + uu H (T, 7'|L, | ¥, )

We use the quenching of the orbital angular momentum for the orbital singlet.

H(S)=2u,S-H

_y (A8, (VoL [T ') + s H, (o LT,y VIAS, (T 7 || W) + 5 HL T |, )1
oy ET,y") - E,
(11.3)
We introduce the notation
(W LT, 7N |, | W)
A = “ . 11.4
Hv 12,;;' E(F', 71) _ E() ( )
HES)=2,S H-Y[VA,S,S, +p’ A HH, + A, (H,S,+H,S)I,
v
(11.5)
or
HS) =Y (4,8,,H,5,-#A\,8,S, —u’A, HH,), (11.6)
y7R%

where E(I',y')— E, is the energy gap between the ground state and the excited states.
g, =206, -1A,). (11.7)

What is the physical meaning of the above spin Hamiltonian?

(1) The g tensor which is different from 2, because of spin-orbit interaction.

(i1) The second term represents the single-ion anisotropy. Note that A, reflects the
symmetry of the system.

We neglect the last term which is related to the Van Vleck susceptibility. We also assume
that

A, 0 0
A=| 0 A, o (11.8)
0 0 A,
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g.=2(1-1A)
g, =2(1-4A). (11.9)
gZZ = 2(1 - lAZZ)

The spin Hamiltonian should reflect the symmetry of the crystal field. Then the spin
Hamiltonian can be written as

HES)=-2(A_ S+ A S?+ A, S+ uy(g.S.H, +g,S H, +g._S.H)

1 S | 1 PO
e A - E(Am + AW)][SZZ —ES(S +D]- 2 E(Am - AW)(Sj - Sj)

+ /LlB (gxxS'xHx + gny;yHy + gzzSsz)

(11.10)

Note that for simplicity we use the unit of 7 =1. We put
5=—12[AZ—%(AX+Ay)], (11.11)
e=—-2(A,—A\)/2. (11.12)

Then the effective spin Hamiltonian H (S) is described as

A A A~ 1 N N N N N
H(S) =[S’ —ES(S +D)]+&(S? - Sj) +p,(g S H, +g, S H +g_ S H)

(11.13)
Note that an important experimental fact is that the crystal-field parameters (9, ¢, and g) do
not change appreciably for the same types of the systems.

11.2  g-factors and the single ion anisotropy D
A. Definition of g-factors

We define gx = gxx, gy = Zyy, and g,, = g,.

1 g
=2(1- A A =—(1-5=
g, =2 ) . z( 2)
1 g,
g,=2(1-2A,) = Ay=z(l—7. (11.14)
1 g
=2(1-JAA A =—(1-2=2
g. =2 2) i z( 2)

The single ion anisotropy constant D is given by
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1
D=-2[A. _E(AX +A,)]

25344

= —1[— £ +l(gx +g, )}

2 4

~2e-2levs)

(11.15)

We assume that g: = g¢, g« = g, = ga for simplicity. The constant D is rewritten as
A
D="(z.~3,). (11.16)

Note that the sign of the spin-orbit interaction constant A is as follows,

A>0  (lessthan half;(3d)" n <5))
A <0 (more than half; (3d)" n >5))

Then we have

If 1> 0, then g. > g = D>0.
If 1 <0, then g. > g = D<0.

Note that the g-value of the free electron is not precisely 2. There are quantum
electrodynamics corrections which leads to the value g =2.0023193043622.

B. g-factors in Cu’" ion in the tetragonal field (c>a = b)
For Cu?" ion in the tetragonal field (¢>a = b), the ground state is |l// 4> (orbital singlet).

In this case the tensor components (see Fig.16 for the energy diagram for Cu** ion ).

L/t

l//4>

A = <W4 iﬂ W5><l//5 LAﬂ l//4> + <W4 LAH W3><l//3
8 Es - E, E - E,
L (wld, v )wilL|w.) L wlL, v, s

El,z _E4 El,z _E4

, (11.17)
l//4>

L/t

where 1 = x, y and z. Noting that

A

L, W4>=_i|W2>a L,

A

W4>=—i|l//3>, iz W4>=2i|l//1>-
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(we use the unit of 72 =1), we have

A =<W4ixW2><W2 ixW4>= 1

. E,—E, E,—E,
A =<l//4 iy l//3><W3 iy W4>= 1

Y E,-E, E,—-E,
\ WLl )Ly, 4

: E —E, E —E,

Then the g-values are calculated as

42
=2(1-
g.=2( E—E)
A
=2(1- :
g.=2 %_&)
Y
=2(1-
g, =2 &_&)

where A (= -850 cm™) and E» = E3>E1>Es>Es. We find that

gx:gy<gz'

11.3. Ni*

As a typical example, we consider the case of Ni** [((34)%; S = 1, L = 3] under the
octahedral crystal field. The energy diagram consists of a orbital singlet state (/3) as a
ground state and an orbital triplet (/5). The energy difference between the ground state and
the excited state is 1 eV and is much larger than the magnitude of the spin-orbit coupling
constant A (=-335 cm™! =-0.0415 eV), Note that 1 meV = 8.0655 cm™.

(i) Since the ground state is the orbital singlet, the quenching of the orbital angular

momentum occurs.
(i) The spin degeneracy is (2S5 + 1) = 3.
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S,ms> withS=1,and ms=1, 0, and -1.



doublet

orbital singlet

cubic field trigonal field

Fig.23 Crystal-field splitting of Ni** ion ground state in the ochtahedral and
tetragonal fields.

In the ground-orbital singlet, the mean value of orbital angular momentum is zero and the
value of spin S = 1. The spin anisotropy arises only as a 2nd-order effect through the
combined effect of spin-orbit coupling and trigonal field within the upper states which are
linked with the ground state in the second order perturbation. For a trigonal distortion, we

expect the anisotropy to be adequately represented by a term DS”.

114 cCr*

Cr’" (3d°) has a ground state *F’. In an octahedral field, the sevenfold orbital degeneracy
(2L+1 = 7) is removed, and the levels are split into a lower orbital singlet (/2) and two
higher lying orbital triplets (75, 72). The low-lying singlet has a fourfold spin degeneracy
(28+1 =4, S=3/2). It is not removed even by the combination action of the octahedral and
spin-orbit coupling, forming two Kramers doublets (see the detail in Sec.12). It can be
removed only by the external magnetic field.

12. Spin Hamiltonian for S =1/2, 1, 3/2, 2 and 5/2

121 S§=1/2
For S = 1/2, the spin operators are described by

~ 1
X :_GX
2
S}’ :%Gy' (12.1)
S, =102
2

0 1 0 —i 1 0
o, = , o, =, , O,= (12.2)
1 0 i 0 0 -1



Q

(38
Il
S = O
O =
N—e
VR
— O
O =
N—
Il

O -
—_ O
N—

, (0 =)0 =i} (1 0 s
Tl o) o) lo 1) (12.3)

, (1 oY1 0Y) (10
G = =
=0 -0 -1 0 1
ST T S a1
Sz :ZGZ :Z,SX:Syzz. (124)

Then Hamiltonian (S = '2) can be described as
I:I(S)=/LlB(gx‘§xHx+gy‘§yHy+gz‘§sz)' (125)

We note that there is no single ion anisotropy for S = 1/2.

12.2. S=1
A. Eigenvalue problem for S =1

For S =1 in the case of (3d)*, Ni*" ion), the spin operators are described by (3x3) spin
matrices,

1 —1
0 — 0 0 — 0
V2 V2 10 0
. 1 1 . i —i .
S=l-— 0 —1|, S=[—— 0 —|, S.=|00 0
V2 V20 (W2 V2 0 0 1
1 i -
0 — 0 0 — 0
2 2
(12.6)
Then
1 1 1 1
- 0 = - 0 ==
2 2 . 2 2 (o
S2={0 1 0], =0 1 0], 8=/00
1 1 1 1
— 0 = —— 0 = 0 0 1
2 2 2 2
(12.7)

Here we consider the eigenvalue problem for the effective spin Hamiltonian given by

H =6[S? —%S(S+l)]+g(§f -82). (12.8)
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We have the determinant given by

——W 0 £
A - 20
A=det(tH-WI)=| 0 —?—W 0 =0, (12.9)
£ 0 é—W
3
or
Wz—zé, é—g, é+€
3 3 3

where W is the energy eigenvalue. For Ni** it is known that 5= £=1 cm™.

Y — DI3 + E=W,

}'— Di3-E=W,

) .
orbital singlet Y D-E
S =1 (spintriplet) h SE—T 5T RS

AL'S)
+ orthorhombic
symmetry

Zﬂ-\
E=Nl

-0 T A
0 - 0J

Fig.24 Energy level of (3d)® Ni*" ion, where D = Sand E = &.
The ground state with spin triplet (orbital singlet) is split into three spin singlets due to the

spin-orbit interaction.
What is the wave function of the ground state?

For W=W1=—§5,

é—W 0 £
|l> 3 : e 0 .10
0) 0 —2—35—W1 0 |c|=|0] (12.10)
|—1> S ¢, 0
& 0 —=W

or
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o 0 ¢&l¢ 0
0 0 Ofc,|=|0], (12.11)
e 0 0 )\c 0
or
oc, +&c, =0
e, +oc, =0
c,=c,;=0
W1:|0>
For Wszzé—g
3
é—W2 0 &
3 05 G 0
0 _T_Wz 0 ¢, =0
c 0
£ 0 g—Wz }
or
£ 0 e\ ¢ 0
0 -0+¢ O0|c,|=|0]. (12.12)
€ 0 e\ e 0
&(c,+c¢;)=0and ¢, =0 SLey =—¢
s = (-1
V2
For W=W,=—+¢,
é—W3 0 €
3 > ¢ 0
0 _T_VV} 0 ¢, |=|0
c 0
£ 0 é—W3 }
3
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or

—& 0 e \ ¢ 0
0 -6-¢ 0 |c|=]|0], (12.13)
& 0 -\ 0

—e&,+ec;=0and ¢, =0 . .¢c =c

1
= -1
vy == () +]-1)

Since the ground state is a spin singlet
1
|ws) NG
1
=—(1)—|-1
)= )11
[w.) =[0)

(D+[=1)

we find that the quenching of the spin angular momentum occurs in the system

S

S.

(w,[S.]w,) =(0]S.[0)=0. (12.14)

z

B. Magnetic susceptibility with the quenching of the spin angular momentum
What is the susceptibility of the system for H//z? We start with this formula wih H =
Ho,

_NKT 0

InZ, (12.15)
H, O0H,

Noting that

the partition function Z can be estimated as

2

o
I L ey Ay
Then we have
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InZ = ‘§ﬂ+ 1n[eﬂ‘$ +2cosh By/&” + gzﬂﬁHg]

Then the susceptibility is given by

_2Nug'uh  sinh(fle)

12.16
|e| (e” +2 cosh(ﬂ|e|)) ( )
at Ho = 0. In the limit of |e| -0,
2.2 2
y= Nt 38 | (12.17)

@+ NET T 4 TR+’

where 6 =k,T;, and NA,uBZ/(3kB) =0.125049 = 1/8 emu/(mol K). Na is the Avogadro
number and kg is the Boltzmann constant. When we assume that g = 2, we have the T
dependence of the susceptibility shown here, where 7o is changed as a parameter. The
susceptibility has a maximum at 7'/7; = 0.6835 .

Fig.25 Tempretaure dependence of the susceptibility for S= 1. To = ks =2 (red),
3,4,5,6,7,8,9, 10 K (purple).

At low temperature, 7 becomes zero, because of the factor ¢’’*#" . The energy of ground

state does not change with the magnetic field. (the system is in the ground state with singlet.)

C. Mathematica program: energy diagram of the spin Hamiltonian with § =1 in
the presence of magnetic field (the general case)
As an example of the application of the spin Hamiltonian, we consider a spin S =1 in
an axially symmetric system with an external magnetic field H = (Hx, Hy, H).
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The energy level of the spin Hamiltonianwith S = 1

H = guB (HxSx + HySy + HzSz) + 6 {SZZ—S (S+1) /3} + € (SXZ—Sy2

Clear["Global "%"];

Jx[/ , n , m] :=

1
- (/-m) (/+m+1l) KroneckerDelta[n, m+1] +
2

1
— N (/+m) (/-m+1) KroneckerDelta[n, m-1];
2

Jyl[7 , n_ , m_] :=

1
— i (7/-m) (/+m+1l) KroneckerDelta[n, m+1] +
2

1

— i1V (/+m) (/-m+1) KroneckerDelta[n, m-1];

2
Jz[/ , n_, m ] := mKroneckerDelta[n, m]
Sx = Table[Jx[1, n, m], {n, 1, -1, -1}, {m, 1, -1, -1}];
Sy = Table[Jdy[1, n, m], {n, 1, -1, -1}, {m, 1, -1, -1}];
Sz = Table[Jz[l1l, n, m], {n, 1, -1, -1}, {m, 1, -1, -1}];
I1={{1, 0, 0}, {O, 1, O}, {0, O, 1}};

Hamil[Hx , Hy , Hz ] :=

1
(guB (Hx Sx + Hy Sy + HzSz) + 6 (Sz.Sz—— S (S+1) Il) +
3

€ (Sx.Sx - Sy.Sy)) /. S->1;
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Matrix element in the general case

Hamil [Hx, Hy, Hz] // Simplify

g (Hx - i Hy) uB e}
V2

{g(HX+]iHy)/JB 26

\/? ’ _TI \/? }I
g (Hx+1Hy) uB 1 -
{e, N (8 3 gHz uB) }}

5
{{5 +g Hz UB,

Eigenvalue problems: eugenvalues and eigenfunctions; Hx

egxl = Eigensystem[Hamil[Hx, 0, 0]] // Simplify

1 1

{{5 (6-3¢), p (—6+3€—3\/62+25€+€2+4g2HXZ/JBZ],
1
6

(—6+3
1

{_lorl}r

€+\/62+26€+€2+4g2Hx2uB2j)},

{
{1, -|g Hx uB

(ﬁ

6—3€+\/62+26€+€2+4g2Hx2uB2)j/

6€+€2+g2Hx2uB2—

6\/62+26€+€2+4g2Hx2uB2)), 1},

{1, (nguB (—6+3€+\/62+26€+€2+4g2HXZ/JBZj)/

(’\/2 [6€+€2+g2 Hx? /JB2+

6\/62+26€+€2+4g2Hx2uB2)), 1}}}
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Eigenvalue problems: eugenvalues and eigenfunctions; Hy

eqyl = Eigensystem[Hamil [0, Hy, 0]]

1
(6+3€), = (—5—36—3\/52—25€+€2+4g2Hy2uB2],

(—5—3€+3\/62—26€+€2+4g2HyzuBZ)},

{{11 Or 1}/ {_11 _(_W —1/(\/?) ]].gHy/,lB (i +

\ 2
1
6[6+3€+3\/62—26€+€2+4g2HyZ/JBZ)])/
o€ 62 1 2 2 2 1
-— 4+ — + — H B+ — €
( 2 2 2g yoH 2

\/62—26€+€2+4g2Hy2uB2 , 1},

{—1, —[—ngyeﬂB—l/(\/?) i gHy uB (i +

V2

1
g[6+3€—3\/62—26€+€2+4g2HyZ/JBZ)])/
o€ 62 1 2 2 2 1
- 4+ — + — H B"-— €
( 2 2 2g v 2

\/62—26€+€2+4g2Hy2uB2], 1}}}
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Eigenvalue problems: eugenvalues and eigenfunctions; Hz

eqgzl = Eigensystem[Hamil[0, 0, Hz]]
o 1
{{——15[5—3\/€2+g2H22uB2),

3
(6+3\/€2+g2H22uB2)},

1
3

-g Hz uB + e+ g2 Hz? /,IBZ

{{Or 1/ O}r {_ IOI 1}/

€

-g Hz uB—\/€2+g2 Hz? /,IBZ
(- - 0, 1}})

rulel = {g->1, uB-» 1}

{g—>1, uB-> 1}

Magnetic field // z, €/5 vs @

energyHz = eqz1[[1]] /6 /. {Hz> 6y, € » 6 x} /. rulel //
Simplify[#, {x>0, 6> 0}] &

(30 3t Sl

L
3 3
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pz[< ] := Plot[Evaluate[enerngz /.x-¢£1,

{v, 0, 2},
PlotStyle » Table[{Thick, Hue[0.15" i]},

{i, 0, 4}], PlotLabel » {<},
guBHZz

AxesLabel - {" ", "E/6"},

é
Background -» GrayLevel[O. 5]] ;

ptz = Evaluate[Table[pz[{], {£, 0,1, 0.2°}1];
Show[GraphicsGrid[Partition[ptz, 2]]]

Fig.26 Zeeman splitting of the energy levels for S=1 as a function of gu,H_/J.
H//z. The index shows the value of £ (= 0 — 1.0).
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Magnetic field //x, E/0 vs g”I;—HX

energyHx =

egxl[[1]]/6 /. {Hx> 6y, € » 6x} /. rulel //
Simplify[#, {x>0, 6 >0}] &

1 1
{—x,(—1+3x—3\/1+2x+x2+4y2),

3 6

1

6

[—1+3x+3\/1+2x+x2+4y2]}

px[< ] := Plot[Evaluate[enerngx /. x> &7,
{v, 0, 2},
PlotStyle -» Table[{Thick, Hue[0.15  i]},

{i, 0, 4}], PlotLabel » {¢},
guBHx6

é
Background -» GrayLevel[O. 5]] ;

AxesLabel - {" ", "E/6"} ,

ptx = Evaluate[Table[px[&], {£, 0, 1, 0.27}]1];
Show[GraphicsGrid[Partition[ptx, 2]]]
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Fig.27 Zeeman splitting of the energy levels for §= 1 as a function of gu,H /9.

H//x. The index shows the value of ¢ (= 0 — 1.0).

BH
Magnetic field // y, €/6 VSM

energyHy =

eqyl[[1]]/6/. {Hy»> b6y, e »6x} /. rulel //
Simplify[#, {x>0, 6§ >0}] &

1

{— + X, g

3

—1—3x—3\/1—2x+x2+4y2),

% (—1—3x+3\/1—2x+x2+4y2]}

pyls ] := Plot[Evaluate [energyHy /. x> £],
{v, 0, 2},
PlotStyle -» Table[ {Thick, Hue[0.15  i]},

{i, 0, 4}], PlotLabel - {&},
guBHy

é
Background -» GrayLevel|[O. 5]] ;

AxesLabel - {" ", "E/6"} ,

pty = Evaluate[Table[py[S], {£, 0, 1, 0.2}]];
Show[GraphicsGrid[Partition[pty, 2]]]
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Fig.28 Zeeman splitting of the energy levels for S= 1 as a function of gu,H /5.

H//x. The index shows the value of £ (=0 — 1.0).

123 S=3/2
A. Simple case with £=0 and 50

For simplicity we consider the spin Hamiltonian with £= 0 and 6> 0.

H =6[S? —%S(S +1)].

Here note that

A

m.)=e(m.)\m.),

H

em.) = (m.|Fl}m.) = 5(n =2,

where |mz> is the eigenket of S’Z with the eigenvalue m_
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(12.19)

(12.20)

+
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A

S mz>:m

z z

m,), (12.21)

For this we get

(12.22)

Both states are spin doublets (Kramers doublet). This is true for any half-integer spin (S =
1/2,3/2,5/2,...)

——— Kramers doublet {(spin doublet)

25 + 1=4 F Y 20
arhital v ‘
singlet ——  Kramers doublet {(spin doublef)
Fig.29 Schematic diagram of the energy levels due to the crystal-field for S =3/2.

There are two Kramers doublets.

B. Kramers doublet
((Time reversal operator))

Il
+
2>

Most operators of interest are either even or odd under the time reversal. DAO"
(+: even, -: odd).

(1) OO0 =il (i is a pure imaginary, 1 is the identity operator).
@  Opo’=-p
3 OFO ' =1 :(Or)=|r)

4) OSSO =-§ (é is the spin angular momentum).

~2

(5) OHO™' = H ,when H = 2p_ +V(x) and V(%) is a potential energy. The relation is
m

independent of the form of V' (¥).
See the Appendix 2 for the detail of the time reversal operator for spin 1/2

((Kramers theorem))

We introduce the time reversal operator © . Suppose that H is invariant under time
reversal,

[H,0]=0. (12.23)
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Let |¢n> and ©

¢n> be the energy eigenket and its time-reversed states, respectively

HO|4,) = ©H|¢,) = OL,|¢,) = E,0

b,). (12.24)

@| ¢n> and |¢n> belong to the same energy eigenvalue.
When 0% =1 (half-integer), @| ¢n> and |¢n> are orthogonal.

This means that @| ¢n> and
states (Kramers doublet).

¢n> (having the same energy) must correspond to distinct

S =1 (even number of electrons) singlet
S =3/2 (odd number of electrons)  doublet (Kramers doublet)

odd number
of electrons
crystal
sgin-omn spin douhlet
coupling (B=0)
AL'S
Fig.30 Schematic diagram of the energy levels for the odd number of electrons

under the crystal field and spin-orbit interaction. The ground state is a
Kramers doublet.

For the odd number of electrons in the incomplete shell, there remains the levels with
double degeneracy in the absence of B in spite of any crystal field (Kramers doublet).
((Note))

Co?": (3d)Y n=7 oddnumber = Kramers doublet
Ni#*: (3d)® #n=8 evennumber => No Kramers doublet

C. ((Mathematica program)) Energy diagram of the spin Hamiltonian with § =
3/2 in the presence of magnetic field

As an example of the application of the spin Hamiltonian, we consider a spin S = 3/2
in an axially symmetric system with an external magnetic field H = (Hx, Hy, H>).
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The energy level of the spin HamiltonianwithS = 3/2
H = guB (HxSx + HySy + HzSz) + & [322 -S(s+1)/ 3] + € (Sx2 - Sy2)

1
Jx[/ ,n ,m]:=— "V (/-m) (/+m+1) KroneckerDelta[n, m+1] +
- 2

1
-~V (/+m) (/-m+1) KroneckerDelta[n, m-1];
2

JY[/_I n_, m_] i=

1
-— i V(/-m) (/+m+1) KroneckerDelta[n, m+1] +
2

1
— 1V (/+m) (/-m+1) KroneckerDelta[n, m-1];
2

Jz[/ , n_, m_] := mKroneckerDelta[n, m]

Sx = Table[Jx[3/2, n, m], {n, 3/2, -3/2, -1},
{m, 3/2, -3/2, -1}];
Sy = Table[Jy[3/2, n, m], {n, 3/2, -3/2, -1},
{m, 3/2, -3/2, -1}];
Sz = Table[Jz[3/2, n, m], {n, 3/2, -3/2, -1},
{m, 3/2, -3/2, -1}];
I1-={{1, o, o, 0}, (0,1, 0, O}, {O, 0,1, 0}, {O, 0,0, 1}};
Hamil[Hx , Hy , Hz ] :=

1
(guB (Hx Sx + Hy Sy + HzSz) + 6 (Sz.Sz—— S(S+1) I1| +
3

€ (Sx.Sx - Sy.Sy)) /. S->3/2;

85



Matrix element in the general case
Hamil[Hx, Hy, Hz] // Simplify

3gH B 1
{{5+%, ~ 3 g (ux-iny) uB, V3 €, 0},

g Hz uB
2

{ V3 g (Hx+ 1 Hy) uB, -6 +
H B 1
{\/3 €, g (Hx + 1 Hy) uB, —5—%, ~ V3 g (Hx-iy) /,lB},

, g (Hx -1 Hy) uB, V3 6},

3gquB}}

O, — V3 g (Hx+1 Hy) uB, 6 - 5

Eigenvalue problems: eugenvalues and eigenfunctions for H = Hx, Hy, and Hz

egxl = Eigensystem[Hamil[Hx, 0, 0]] // Simplify;

eqyl
eqzl

Eigensystem[Hamil[0, Hy, 0]] // Simplify;

Eigensystem[Hamil[0, O, Hz]] // Simplify;

rulel = {g-» 1, uB-1};
Magnetic field // z, €/6 vs 'g”ﬁ—HZ

energyHz = eqz1([[1]]/6 /. {Hz> 6y, € » éx} /. rulel //
Simplify[#, {x>0, 6§ >0}] &;

pz[< ] := Plot[Evaluate[enerngz /.x-> &1, {v, 0, 2},

PlotStyle » Table[{Hue[0.15i], Thick}, {i, 0, 4}],

PlotLabel » {£}, PlotPoints -» 100,
guBHZz

AxesLabel -» {" ", "E/cS"} , Background - GrayLevel[0.5] ] ;

6
ptz = Evaluate[Table[pz[{], {&£, 0, 1, 0.2}]];
Show|[GraphicsGrid[Partition[ptz, 2]]]
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Fig.31 Zeeman splitting of the energy levels for S = 3/2 as a function of
guzH_ /6. H//z. The index shows the value of £ (= 0 — 1.0).

Magnetic field //x, E/6 vs _gu]:’;_Hx

energyHx = egqx1[[1]] /6 /. {Hx >S5y, € » 6x} /. rulel //
Simplify[#, {x>0, 6§ >0}] &;

px[< ] := Plot[Evaluate[enerngx /.x-> &1, {yv, 0, 2},

PlotStyle » Table[{Thick, Hue[0.15i]}, {i, 0, 4}],

PlotLabel » {<£}, PlotPoints -» 100,
guBHx

AxesLabel - {" ", "E/6"} , Background - GrayLevel[0.5] ] ;

é
ptx = Evaluate[Table[px[&], {&, 0, 1, 0.2}]1];
Show|[GraphicsGrid[Partition[ptx, 2]]]



Fig.32 Zeeman splitting of the energy levels for S = 3/2 as a function of
gugzH /o0 . H//x. The index shows the value of £ (= 0 — 1.0).

guBHY
5

Magnetic field // y, E/ & vs

energyHy = eqyl[[1]]/6 /. {Hy> 6y, € » 6k} /. rulel //
Simplify[#, {x>0, 6§ >0}] &;

py[<] == Plot[Evaluate[enerngy /-x-> &1, {yv, 0, 2},

PlotStyle -» Table[{Hue[0.15i], Thick}, {i, 0, 4}],

Prolog -» AbsoluteThickness[2.5 ], PlotLabel -» {<},

guBHy
é

PlotPoints - 100, AxesLabel-a{" ' "E/6"},

Background -» GrayLevel]|[O. 5]] ;

pty = Evaluate[Table[py[£], {£, 0, 1, 0.2}]];
Show[GraphicsGrid [Partition[pty, 2]]]
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,/

Fig.33 Zeeman splitting of the energy levels for S = 3/2 as a function of
guzH /5 . Hlly. The index shows the value of & (= 0 - 1.0).

12.4. Energy diagram for S =2

&9



The energy level of the spin Hamiltonianwith S = 2
H = guB (HxSx + HySy + HzSz) + 6 [522 -S(s+1)/ 3] +€ (Sx2 - Syz)

IJx[7 ,n ,m] :=

1
EV (/-m) (/+m+1) KroneckerDelta[n, m+1] +

1
E’\/ (/7 +m) (/-m+1) KroneckerDelta[n, m-1];

JY[/_I n_, m_] =

1
_E i vV (/-m) (/+m+1) KroneckerDelta[n, m+1] +

1
E iy (/7 +m) (/-m+1) KroneckerDelta[n, m-1];
Jz[7 , n_, m ] := mKroneckerDelta[n, m]

Sx = Table[Jx[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];

Sy = Table[Jdy[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];

Sz = Table[Jz[2, n, m], {n, 2, -2, -1}, {m, 2, -2, -1}];

I1-={{1, 0, 0, 0, 0}, (O, 1,0,0,0}, {O,0,1,0, 0},
{0, 0,0,1, 0}, {O,0,0,0, 1}};

Hamil[Hx , Hy , Hz ] :=

1
guB (Hx Sx + Hy Sy + HzSz) + 6 (Sz.Sz—;S (S+1) Il) +

€ (Sx.Sx - Sy.Sy)) /. S->2;
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Matrix element for H=0

Hamil[O0, O, 0] // Simplify

{{26, 0, V6 €, 0, 0},
{0, -6, 0, 3¢, 0}, {N6 ¢, 0, 25, 0, V6 €},
{0, 3¢, 0, -8, 0}, {0, 0, V6 €, 0, 265}}

Eigenvalue problems: eugenvalues and eigenfunctions for H= 0

eql = Eigensystem[Hamil [0, O, 0]] // Simplify

Hzé, 6-3e, 6+3¢, 2461362, 2\/52+3e2},

{{_lr Or Or Or l}l {Or _lr Or lr O}r

{Or lr Or lr O}r {lr Or -

é (—5+\/52+3€2
o o))
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energy =eql[[1]]/6/. {e » 6%} //
Simplify[#, {x>0, 6>0}] &

{2, “1-3x, -1+3x, —2\/l+3x2 , 2\/l+3x2}

Plot[Evaluate[energy] , {x, -2, 2},

PlotStyle » Table[{Thick, Hue[0.151i]}, {i, O, 4}],
Prolog -» AbsoluteThickness[2.5],

€
AxesLabel - {" S ", "E/cS"} , Background - GrayLevel[0.7] ]

S

S

Fig.34 Energy diagram for S = 2. E/6vs &/0. The ground state is a spin singlet.

12.5. §=5/2
A. Simple case for S =5/2

———  Kramers douhlet |+5/2=

)
(3d)* 4D
= }[— Kramers doublet |+3/2=
\ B Kramers doublet |£1/2=
Fig.35 Schematic diagram of the energy levels for S'= 5/2 under the crystal field.

There are three Kramers doublets.

(2S + 1) = 6 degeneracy

H = D[S? —%S(S +1)]. (12.25)
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Here note that

i m.).

m.) = e(m.)

A Ny L3 T
g(m.)=(m_|H|m_) = D(m; L

where m, = 5/2, 3/2, -1/2, -3/2,-5/2.

From this we get

fm=s)eo2-2)-10,

=23 )=o5-2)--2s
2 4 12 3

B. Mathematica for S = 5/2 (general case)

The energy level of the spin Hamiltonianwith S

(12.26)

(12.27)

H = guB (HxSx + HySy + HzSz) + & [522 -S(s+1)/ 3] + € (Sx2 - Syz)

Clear["Gobal "] ;

JX[/_, n_, m_] .=

1
E v (/7 -m) (/+m+1l) KroneckerDelta[n, m+ 1] +

1
EV (7 +m) (/-m+1) KroneckerDelta[n, m-1];

JY[/_I n_, m_] o=

1
_E i V(/—m) (7 + m+ 1) KroneckerDelta[n, m+1] +

1
EiV(/+m) (#/-m+1) KroneckerDelta[n, m-1];

Jz[7 , n_, m ] := mKroneckerDelta[n, m]



Sx = Table[Jx[5/2, n, m], {n, 5/2, -5/2, -1},
{m, 5/2,-5/2, -1}];
Sy = Table[Jdy[5/2, n, m], {n, 5/2, -5/2, -1},
{m, 5/2,-5/2, -1}];
Sz = Table[Jz[5/2, n, m], {n, 5/2, -5/2, -1},
{m, 5/2,-5/2, -1}];
I1-={{1, 0, 0, 0, 0, 0}, {O,1, 0,0, 0,0},
{0, 0,10, o0, 0}, {O,0,0,1, O, O}, {O,0,0,0,1, 0},
{0, 0,0,0,0,1}};
Hamil[Hx , Hy , Hz ] :=

1
(guB (Hx Sx + Hy Sy + Hz Sz) + 6 (Sz.Sz— g S(s+1) Il] +
€ (Sx.Sx - Sy.Sy)) /.S8->5/2;

Matrix element for H=0

Hamil[0, 0, 0]
eql = p /. {e»>6x}//

Simplify[#, {x>0, §>0}] &

{%,o V10 %, 0, 0, o},

{o, g, 0, 32 x, 0, o}, {mx 0, —%, 0, 3V2 x, o},
{o, 3V2 x, 0, —§, 0, mx}
{

2 10
0, 0, 32 %, 0, -<, o}, {o, 0, 0, V10 x, 0, ?}}

{
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Eigenvalue problems: eugenvalues and eigenfunctions for H= 0
eql = Eigenvalues[eql] // Simplify;
Plot[Evaluate[eql], (x, -2, 2},
PlotStyle - Table[{Thick, Hue[0.15i]}, {i, 0, 4}],

€
PlotPoints » 100, AxesLabel -» {"E" , "E/6"} ,

Background -» GrayLevel[0.5] ]

Fig.36 Energy diagram for S' = 5/2. E/Svs ¢/0. All the three states are a Kramers
doublet.

13.  Spin Hamiltonian of Fe2* and Co?" in the trigonal crystal field
13.1. Fe*
A. Energy diagram

For Fe** [(3d)?], the ground state is the orbital triplet. Thus we cannot use the method
proposed by Pryce. In this case, we need to determine the energy diagram by taking both
the crystal field and the spin orbit interaction into account.'®
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r3

Fel+

Orhbital doublet

I's A singlet

T2

Qrhital triplet
Spin multipliciy=4 doublet
8=2
trigonal
Cubic field field
Fig.37 Crystal field splitting of Fe*" ion ground states.

The free-ion (3d)0, 5D state (L = 2, S = 2) of the Fe2* is split by the cubic crystal field
into the orbital doublet (E) and orbital triplet (7%), the latter being the lowest one. The
orbital wavefunction of the ground orbital triplet are represented by

0=l = 216+ 1)

| 0)=|v,)=|¢) (13.1)
|V/dz \/7|¢z \/—|¢
where we use the notation, —3,m> = ¢m> m> = m> (m =

-3, -2, -1, 0, 1, 2, 3). Hereafter we do not use the operators in quantum mechanics for
convenience. We consider the splitting of the orbital triplet by the perturbing Hamiltonian
given by

Hoz—kzi-ﬁ—a(zj—%). (13.2)

where k (= 1) is a constant, 4 (= -100 cm™ for Fe?") is a spin-orbit coupling constant, and
S is the spin angular momentum of the magnitude 2. The second term is the tetragonal field.
A fictitious angular momentum / of the magnitude 1 represents the triplet state (I is
antiparallel to the real orbital angular momentum L (= -k/).

Since [, + S, is a constant of the motion, its eigenvalue m can be used to classify the

various states, where m =1+ S,’, L|l,’>=1|l,’> (I, =1, 0, -1), and S,|S,>= S,’|S,”> (S,
=2, 1,0,-1,-2). There are 15 states. A notation

" Z'> is used to specify these states.
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m=1,+8,, Eigenfunctions

3 1'=1,8.'=2)

2 11),10,2)

1 1,0), [0,1), [-1,2)

0 1-1),]0,0), |- L1I)
-1 1,-2), [0,-1), |-1,0)
2 0,-2), |-1-1)

3 |-1,-2)

We have the splitting of the ground orbital triplet by the spin-orbit coupling 4’ and the
trigonal field 0 (>0). The energy levels are denoted by

Ey (m=%3), B, (m=%2), E\0 (i=1,2,3) (m==x1), £y® and E,®) (m =0).

o
Here we use x :E'

) m=+3(E)

(i)  m==2[E]

£=£—1+1\/9+2x+x2

A6 2 2

(i) m==1[ED, E\?, E\¥]

El(i) X .
=241+ i=1,2,3).
T 3 S ( )
where
NI S
éi +1 éz _1
(iv)  m=0/[E, Es®]
(0) *) *)
Y A Y
A 3 A3 A 3
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The ground level is either E¢(" or £1(1), depending on the sign of x. All the energy states
except for £1(1) and E,(") might be neglected in the first approximation, since these lowest

levels lie 100 cm! below the others.
Thus we may use a fictitious spin s = 1 for the lowest three states denoted by the
eigenkets | y> for the singlet and |y, ;> for the doublet:

Vo) = ¢|£1,0)+ 6| 0,£1) + ¢y T 1,42), for £ =E,(1), (13.3)

L-1)+a,

o) =a 0,0) +a,|—1,1) for E = Ey(*). (13.4)
The parameters ¢y, ¢y, c3, ay, ap, and a3 are defined by

2 2 2 2 2 2
¢ +c, +e =1, a”+a, +a; =1, (13.5)

Jia ra

=, =, = . 135
¢ 1+& (&) G 1-¢ ( )
V3 &
a,=a, = ————, a, =—=— (13.6)
IR PR R
where
a’ =] 3 -+1+ 2 -1, (13.7)
1+$) (1-<)

and the parameters &) and & are related to the energy E1(1) and E¢(") through

X X
=—Z41+&, — =41+ E . 13.8
3 S Py 3 S0 (13.8)
B. Spin Hamiltonian with fictitious spin s = 1.

The g-factors can be evaluates as g, = g,(0) + Ag and g, = g,(0) + Ag, where Ag is due
to the effect of spin-orbit coupling in admixing the upper orbital levels into the ground
three orbitals, and g,(0) and g,(0) are given by

V.

g = lVlwa) =—ka’ +2¢," +(k+4)c), (13.9)

& =2l

'//¢1> =—k(cja, + c,a;) + 2\/5(01% +0a,) + 2\/503% .
(13.10)

V.
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where V., =—kI_+2S_ and V,_ =—ki_+2S.. For a given k, the two g.(0) and g,(9) values are

functions of the single parameter x and so they bear a functional relationship to each other.
In Fig.40 we show the g.(0) and g,(0) as a function of x with & as a parameter: g (9>g,(0)

for x<0 and g(9<g,(® for x>0. Note that x = -1.27 for FeCl,.
If we take the z axis parallel to the ¢ axis, and x, y axes perpendicular to it, we have

SX = qSX’ Sy = qSY’ SZ :pSZ’
Here
S.|wo) =-a|lL-1)+a|-11), S.|w,)==(c,|0£1)+2¢;|F1,22), (13.11)
WalS.lwa) =" +2¢,") = 2p, (yolS.lya) =0, (13.12)
<'//1 S Wo> =\/g(cla1 +0a,) + 2030y = \/Eq ) (13.13)
where
p=c, +2c, qzx/g(cla1+cza2)+x/§c3a3. (13.14)
((Note))

Note that for s =1, <1//1 |S+|Wo> =~/2, where o),
1. In other words, we have

74 i1> are assumed to be eigenkets of s =

<'//1|S+|Wo> :<W1 |qs+|Wo> = \/Eq = \/g(clal +0a,) + 2030y, (13.15)

S.

(wilSlwi) =(wilps.w) = p=¢" +2¢.. (13.16)

If we assume that the exchange interaction within the ground orbital triplet is given by
H;=-2JS,-S,, (13.17)
the effective exchange interaction nearest spins within the ground levels is expressed by
H;=-2J, [q° (8,8 +5,5,)+ pzsizs_/z] . (13.19)

Thus the exchange interaction becomes anisotropic. This is rewritten as
2 2 2
Hy==-2J,[q7s;-s; +(p" —q°)s.s.]. (13.20)

The resultant spin Hamiltonian for Fe2" is given by
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H= —DZ‘,(%2 —%) —2J s, 8, =20, > s, (13.21)

<i,j> <i,j>

where the fictitious spin s = 1. J = ¢2Jj D = §10 (>0) is the single ion anisotropy, and J

(=J (p?-g?)/q?) is the anisotropic exchange interaction. The second term is the isotropic
exchange interaction, and third term is the anisotropic exchange interaction. The spin
anisotropy parameter D¢ is defined as Dogr(= D (s -1/2) + 2z5J 5. The XY (Ising) symmetry

appears when Dop<0 (Dgs£>0).

C. Mathematica-Program: energy diagram of Fe’" in the trigonal field
Here we calculate the energy levels, the probability amplitudes and parameters of spin
Hamiltonian of Fe** ion in the trigonal field.
((Mathematica program))
Fictitious spin s=1 in Fe2+, Spin Hamiltonian
Clear["Gobal "]

x x 1 1 /—5————- -
E3=—(—§—2);E2p=—(—6—5+5'\/x2+2x+9);
x 1 1 /—5——— —
=—(E—E—E'\/x2+2x+9);
E13[x1]:=Nbdule[{t,y},t=x1;eq11=t== (y+1) - - 2 ;
- y+1 y-1

sl = NSolve[eqll, y] // Flatten; E13[t] = - (—g + (Y + 1)) /.s1[[1]] ];

3 2
y+1 y-1'

E12[x2 ] := Module[{t, ¥}, t=x2;eqR2=t== (y +1) -

s2 = NSolve[eq22, y] // Flatten; E12[t] = -(-g + (Y +1)) /. 52[[2]]];

3 2
+1 y-1"

Ell[x3 ] := Module[{t, y}, t=x3;eq33=t== (y +1) -
Yy

s3 = NSolve[eq33, y] // Flatten; E11[t] = -(-g +(y+1) /. s3[[3]])];
x
E0=-(-5 +1);

EOp[x4 ] :=Module|{t, y}, t=x4;eq4d = y+£—1 y—g -6:=20;
[ 3 3

s4 = NSolve[eg44, y] // Flatten; EOp[t] =-y /. s4[[2]]];
EOn[x5 ] := Module|[{t, y}, t=x5; eq55 = (y + l; - 1) (y_ %) -6=:0;
s5 = NSolve[eq55, y] // Flatten; EOn[t] = -y /. s5[[1] ]]

Wavefunctions, g-values, anisotropic exchange interaction
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clixl , k1 ] := Module[{t, k, y, s1, y1}, t = x1;k=kl;

eqll=t==(y+1) - 3 - ; s1= NSolve[eqll, y] // Flatten;
y+1 y-1
1 V3
yl=y/.sl[[3]];cl[t, k] = 1‘/ ]];
+yl
3 2 \ )

1
ayn2 T a2

c2[x1 , k1 ] := Module[{t, k, y, s1, y1}, t = x1;k=k1;

—— ; s1=NSolwve[eqll, y] // Flatten;

1l =t== 1) - -
eq e~ T

1
yl=y/.sl[[3]];c2[t, k] = ]:
3 2
@z Y1 e

c3[x1 _, k1 ] := Module[{t, k, y, s1, y1}, t = x1;k=k1;

y+1 y-1

; sl = NSolve[eqll, y] // Flatten;

1 f«/’i]

(1-v1

eqll=t==(y+1) -

yl=y/.sl[[3]];c3[t, k] =

]:

3 2
@z * 1 e

al[xl , k1 ] := Module[{t, k, z, 52, yO} , t = x1;k=k1;

eq22 = (z "3 _1) (z—%) - 6:= 0; s2 = NSolve[eq22, z] // Flatten;
y0 = (z+—t—1) /.82[[2]]; al[t, k] = - _Y_i_ I
3 6+y0?
a2[xl_, k1 ] :=Nbdule[{t, k, z,s2,y0}, t = x1;k=kl;
eq22 = (z "3 _1) (z—%) - 6:= 0; s2 = NSolve[eq22, z] // Flatten;
y0= (z+—t—1) /.82[[2]];a2[t, k] = __{?_ ]
3 6+ y0?
a3(xl_, kl_] := Module[{t, k, 2, s2, y0}, t = x1;k=k1;
eq22 = (z +3 —1) (z—%) - 6= 0; s2 = NSolve[eq22, z] // Flatten;
t V3
y0= (z+ - -1) /.s20[211; a3[t, k] = - ]
3 6+ y0%

qix_, k ] :=V3 (clix, k] al[x, k] + c2[x, k] a2[x, k]) +
V2 c3[x, k] a3[x, k] ; p[x_, k ] := c2[x, k]®+ 2c3[x, k1?;
gelx , k 1 := -kcl[x, k]?+2c2[x, k1?+ (k+ 4) c3[x, k1%;
ga[x _, k ] :=-k (cl[x, k] a2[x, k] +c2[x, k] a3[x, k]) +
24/3 (cl[x, k] al[x, k] +c2[x, k] a2[x, k]) +24/ 2 c3[x, k] a3[x, k]
Overview of the Energy levels, E3, E2+, E2-, E13[x], E12[x], E11[x], EO, EO+[x],E0-[x]
as a function of x

Plot[Evaluate[{E3,E2p,E2n,E13[x] ,E12[x] ,E11[x] ,EO,EOp[x] , EO
n[x]}],{x,-8,8}, PlotStyle-»Table[Hue[0.1
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i],{i,0,8}],Prolog-»AbsoluteThickness[3],
AxesLabel-{"x=6/A'","E/|A'|"}, Background-GrayLevel[0.7]]

/

=Graphics=

Fig.38 The splitting of the ground orbital triplet by the spin-orbit coupling and
the trigonal field for Fe?" ion in the trigonal field. £3 (red), E2© (yellow),
E\® (green), Eo© (purple), £ (blue), £/ (green), E»™ (orange), £V
(ligh blue), and Eo” (blue).

The ground level : either E11[x] or EO+[x] as a function of x
Plot[Evaluate[{Ell[x] ,EOp[x]}],{x,-6,6},
PlotStyle—»Table[Hue[0.5
i],{i,0,1}],Prolog-»AbsoluteThickness[3],
AxesLabel-{"x=6/A'","E/|A'|"},Background-GrayLevel[0.7]]

=-Graphics=-

Fig.39 The detail of the two energy levels £ (red) and E¢" (light blue) as a
ground state for Fe** ion in the trigonal field.

Plot of the g-factors gc[x,k] and ga[x,k] as a function of x with k = 0.9, 0.95, and1.0
Plot[Evaluate[Table[{gc[x,k] ,ga[x,k]},{k,0.9,1,0.05}]],{x,-
10,10}, PlotStyle-»Table[Hue[0.3
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i],{1i,0,10}],Prolog-»AbsoluteThickness[3],
AxesLabel-{"x=6/A'","gc"} ,Background-GrayLevel[0.7]]

=-Graphics=

Fig.40 Plot of g (red) and g, (blue) as a function of x for Fe** ion in the trigonal
field. £=0.9, 0.95, and 1.

Anisotropic parameters of spin Hamiltonian q and p, Plot of q and p as a function of x
with k =0.9, 0.95, and1.0
Plot[Evaluate[Table[{q[x,k],p[x,k]},{k,0.9,1.0,0.5}]1]1,{x,-
8,8}, PlotStyle-»Table[Hue[0.4
i],{i,0,8}],Prolog-»AbsoluteThickness[3],
AxesLabel-{"x=6/A'","q, p"}, Background-GrayLevel[0.7]]

=-Graphics=

Fig.41 Plot of the parameters g (red) and p (green) for Fe?" ion in the trigonal
field. £=0.9, 0.95, and 1.
Plotof P:zqz asafunctionofx.k = 0.8, 0.9, 1, 1.1

pIx, k1% -qix, k]?
q[x, k]2

{x, -8, 8}, PlotStyle- Table[Hue[0.5i], {i, 0, 8}],

Prolog- AbsoluteThickness[3] , AxesLabel » {"x=6/1'", "D"},

Background » Graylevel[0.7] |

Plot|Evaluate|Table| , 1k, 0.8,1.1, 0.1}]],
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=-Graphics=

Fig.42 Plot of the spin anisotropy parameter p*/q*> — 1 as a function of x for Fe**
ion in the trigonal field. £=0.8, 0.9, 1, and 1.1.

gc vs ga curves with k = 0.9, 0.95, 1.0
ParametricPlot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1.0,
0.05}11,{x,-100,100},
PlotPoints-»100,PlotStyle—»Table[Hue[0.2
i],{1,0,10}],Prolog-»AbsoluteThickness[3],
AxesLabel-»{"gc","ga"},PlotRange-»{{1.8,5.4},{1.5,4}},
Background-GrayLevel[0.7]]

=Graphics=

Fig.43 Calculated relation between g and g,-values of Fe** ion in the trigonal
field. £ = 0.9 (red), 0.95 (yellow), and 1.0 (green).

squares of amplitudes (c1, c2, ¢3) of the wave functions as a function of x

k=0.9

Plot[Evaluate[{cl[x, 0.9]%, c2[x, 0.9]%, c3[x, 0.91%}], {x, -10, 10},
PlotStyle » Table[Hue[0.31i], {i, 0, 3}], Prolog - AbsoluteThickness[2],

Background » Graylevel[0.7] ]
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=-Graphics=

Fig.44 Plot of the probability amplitudes ci? (red), c2* (blue), and c3* (green), as
a function of x for Fe" ion in the trigonal field. k= 0.9

Squares of amplitudes (al, a2, a3) of the wave functions, as a function of x
k=0.9
Plot[Evaluate|{al[x, 0.9]%, a2[x, 0.91%, a3[x, 0.91°}], {x, -10, 10},
PlotStyle -» Table[Hue[0.21i], {i, 0, 4}], Prolog - AbsoluteThickness[2],
Background » Graylevel[0.7] ]

I

=-Graphics=

Fig.45 Plot of the probability amplitude a.? (n = 1 — 3) for Fe?" ion in the trigonal
field. £k =0.9.

13.2. Co?*
A.  Energy diagram of Co*
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Fig.46 Crystal-field splittings of Co®" ion ground states.

For Co** [(3d)], the ground state is the orbital triplet. Thus we cannot use the method
proposed by Pryce. In this case, we need to determine the energy diagram by taking both
the crystal field and the spin orbit interaction into account.'”-*

In a cubic crystal field the free-ion 3d’ (L = 3, S = 3/2), 4F state is split into two orbital
triplets and one orbital singlet with a triplet the lowest,

=l = e o)

2 1[5
10)=[w) =314n) —5£[|¢3> -l ). (13.22)
5 1
)= =_|= -
)=l = o) 1)
where we use the notation, |/ =2, m> = ¢m> and we have the relation iz ¢m> =m ¢m> (m=

-2,-1,0, 1, 2). We can verify that

(1)L, L|0)=0, (£1]L.|0)=(0|L|+1)=(+1|L|F1)=0.

(13.23)

J_rl>:$%, (0

z
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We can show that all the matrix element of L within the states |0> ,

+ 1> , are exactly the

same as the matrix element of -3//2, where [ is a fictitious angular momentum of the
magnitude 1. Hereafter we do not use the operators in quantum mechanics for convenience.

Now we consider the splitting of the ground orbital triplet by the tetragonal crystal field
together with the spin-orbit coupling,

3
2

2

Hy=—2kAl -S-6(° —5), (13.24)

where A’= kA, A is the spin -orbit coupling constant and may be different from its free-ion
value of -180 cm!, and £ is the orbital reduction factor due to admixture of 4P into 4T1 and
is less than but of order unity, ¢ is the trigonal field strength, and § is the spin angular
momentum of the magnitude 3/2. A fictitious angular momentum / of the magnitude 1
represents the triplet state (/is antiparallel to the real orbital angular momentum L = -3k1/2).

Since [, + S, is a constant of the motion, its eigenvalue m can be used to classify the
various states, where m =1,’+ §,’, ([,’=1,0,-1 and S,” =3/2, 1/2,-1/2,-3/2). There are 12
eigenfunctions.

m=1,+8,, Eigenfunctions
s et
2 2
3 L1 o2
2 2 2
l la_l 5 Oal 5 _172
2 2 2 2
_l _lal 5 Oa_l 5 la_é
2 2 2 2
s ) o2
2 2 2
s 3
2 2

The secular equation reduces to three separate equations for energy. The energy
eigenvalues are as follows.

Eg (m=+£5/2),
Eq(i) (m =+£3/2),
EO, E (D), and E2) (m=+1/2).

For all values of x, E,(9) is the lowest energy. The wave functions |y, >, |p.3>, and |p4>
for m = £1/2 are given by
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|Wi1>:

1
W) =c|F 1,i%> + ¢, O,J_r5> +e|t LT

1 1
lv.)=c 11,J_r%>+c8 O,J_r§>+cg J_r1,¢§> for E = E2).

where the parameters ¢; (i = 1 - 9) are defined by

J6 V8
¢ _g_oﬁoa Bos Gi/t2 Bos
NG 8
c,=—Pph, cs=-p, = Biss
7 "5
6
¢, =—p,, cg==p,, c= B,
S Got+2
with
B =21+ —5 12 (j=012).
Y (6, +2)

The parameter ¢ (7 =0, 1, 2) is related to E/A as

£.()

=4 +3
a3 4(g/ )
and
o 3 9 6
=_,:_(g_/+3)___ .
A4 2g;, ¢, +2

The wave functions |y4,> and |y,.5> for m = £3/2 are given by

3
lv.,)=d, O,J_r§> +d,|+ 1,J_r—> for . = E,(),

3
lw.s)=d, O,J_r§> +d,|+1+ > for E5 = E (),
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(13.28)
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(13.30)
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where the parameter d; (i = 1- 4) is defined by

9 2 E(*)
d =——y", d, = , 13.33
1 2\/67 2= 2 ( )
(+)
9 _ o+ 2 q
d,=——y, d, = —x + , 13.34
3 2\/67 4 =7 (3 1 ) ( )
with
2 ()
= TR BT 13.35
[(2\/— Y )] ( )

B. Fictitious spin s = 1/2

Since there are only two states in this lowest Kramers doublet (E = E”), the true spin
S (=3/2) can be replaced by a fictitious spin s of the magnitude 1/2 within the ground state.
The g-factors can be evaluated as g, = g,(0) + Ag and g, = g,(0) + Ag, where Ag is due to
the effect of spin-orbit coupling in admixing the upper orbital levels into the ground orbital
triplet. The values of g.(9) and g,(9), are given by

g =2y, [Vlw..) = Bk +6)c +2¢, — 3k +2)cy’, (13.36)

g = 2<W¢1 NLE > = 4\/50102 +4c,” - 3\/5160263 (13.37)
with

V,=-(3kI2)1,+2S,, Vi =-GBki2)ly + 28

If we take the z axis parallel to the c axis, and x, y axes perpendicular to it, we may finally
replace the true spin S = 3/2 within the ground doublet, by the s= 1/2 fictitious spin,

S, = qSx, Sy = qSy, S; = DSz

p=2y. |8 w.) =3¢ +¢," 3¢, (13.38)
q= 2<1//+1 +iS |l// 1> 2\/56102+2022_ (13.39)

Let us now consider the Heisenberg exchange interaction given by
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H=-2J8,-S,=-2Jyqg’s;-s, =2Jo(p* —q°)s. "5, (13.40)

or
H==2Js-s,—2J, > s.5,. (13.41)
<i,j> <i,j>
where
J=q?J, Ja = (g~ .

The first term is a Heisenberg-type (isotropic) exchange interaction and the second term is
an anisotropic exchange interaction: Ja = Jo (p* — ¢*). Since s = 1/2, there is no single ion
anisotropy. The ratio J5/J (= (p?/g?-1) provides a measure for the spin symmetry of the
system. The spin dimensionality of the system is Ising-like for JA>0, XY-like for Ja<0, and
Heisenberg-like for Ja = 0.

C. Mathematica program: energy diagram of Co** in the trigonal field
Here we calculate the energy levels, the probability amplitudes and parameters of spin
Hamiltonian of Co®" ion in the trigonal field.

((Mathematica program))
Six Kramers doublets in Co?*, M.E. Lines, Phys. Rev. 131, 546 (1963);
T. Oguchi, J. Phys. Soc. Jpn.
20, 2236 (1965))
Energy levels, Et, EcO-= Ec? , Ecl = EcV , Ec2 = Ec? , Egn = EqH , Eqp = Eqm'
Clear["Gobal "]

x 9 x 3 1 [, 3 225
Et= — +_ ;EQp=-—+— - — .| X+ _x+— ;

EcO[x3 ] := Nbdule[{t, v}, t=x3;eq1=t==3 (y+3)-— -

sl = NSolve[eql, y] // Flatten; EcO[t] = —(—g +% (y +3)) /. s1[[3]]];

Ecl[x2_] :=Nbdule[{t,y},t=x2;eq1=t==3 (y+3)—i— 6

t 3
s1= NSolve[eql, y] // Flatten; Ecl[t] = -(-5 R +3)) /.s1[[111];

Ec2[x1]:=Nbdule[{t,y},t=x1;eq1=t==é(y+3)—i— 6 ;
- 4 2y y+2

t 3
s1= NSolve[eql, y] // Flatten; Ec2[t] = -(-5 + (y+3)) /.s1[[2]]]

Since there are only two states in the lowest Kramers doublet, we can use a fictitious
spin s for the lowest doublet.
Pameters, c1, c2, c3, c4, c5, c6, c7, c8, ¢9, d1, d2, d3, d4, p, q, gc, ga
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cl{x4 , k1 ] := Module[{t, y, k}, t=x4; k=k1;
eqdd = t== % (y +3) —2—9y - yf2 ; s4 = NSolve[eqg44, y] // Flatten;
V6
clft, k]=— ¥ /. sA[[311];
sz +1+T82>2
c2[x4 , k1 ] =Module[{t y, k), t=x4; k=kl;
eqdd = t== % (y +3) - 2—9y - ﬁ ; s4 = NSolve[eqg44, y] // Flatten;
2[t, k]= — /. s411311];
P ATy
c3[x4 , k1 ] :=Nbdule[{t, y, k}, t=x4; k=k1;
eqdd = t== % (y +3) - 2—9y - ﬁ ; s4 = NSolve[eqg44, y] // Flatten;
V8
o3[t kj= ——— Y2 /. s4[1311]
6 8
¥2 (y+2)2
c4[x4 _, k1 ] := Module[{t, y, k}, t =x4; k=k1;
eqd4d = t== % (y +3) - 2—9y - Yf62 ; s4 = NSolve[eqg44, y] // Flatten;
V6
calt, k=¥ /. s4[[1]1]
762 1+ (y:gZ)2
c5[x4 , k1 ] =Module[{t y, k), t=x4; k=kl;
eqd4d = t== % (y +3) - 2—9y - ﬁ ; s4 = NSolve[eqg44, y] // Flatten;
c5[t, k] = _____'_1 _______ /. s4[1111];
% +1+T82>2
c6[x4_, k1 ] := Module[{t, y, k}, t =x4; k=k1;
eqdd = t== % (y +3) - 2—9y - ﬁ ; s4 = NSolve[eqg44, y] // Flatten;
V8
c6[t, k] . L — /. s4[[111];
sz +1+T82>2
c7[x4_, k1 ] := Module[{t, y, k}, t =x4; k=k1;
eqdd = t== % (y +3) —2—9y - ye2 ; s4 = NSolve[eqg44, y] // Flatten;
A6
7t k]=— ¥ /. s4[[211]
F2 (y+2)2
c8[x4_, k1 ] := Module[{t, y, k}, t =x4; k=k1;
eqdd = t== % (y +3) ——gy - y+2 ; s4 = NSolve[eqg44, y] // Flatten;



Energy diagram of Et, Eq-, Eq+, Ec0, Ecl, Ec2 for Co2+ as a function of x

Plot[Evaluate[{Et,Eqn,Eqgp,Ec0[x] ,Ecl[x] ,Ec2[x]}], {x, -
10,10}, PlotStyle-»Table[Hue[0.15
i],{1i,0,6}],Prolog-»AbsoluteThickness[3] ,Background-»GrayLeve
1[0.7] ,AxesLabel-s{"x=6/A"'","E/|A'|"}]

/

=Graphics-=

Fig.47 Energy levels of six Kramers doublets for Co** ion in the trigonal field.

E%(0) (light green), Eq (green) E.V (blue), E.? (purple), Eq" (yellow), and
E; (red)

Squares of parameters, cl, c2, ¢3, c4, c5, c6 as a function of x
k=0.9
Plot[Evaluate[{cl[x, 0.9]%, c2[x, 0.9]%, c3[x, 0.9]%, c4[x, 0.9]%,
c5[x, 0.9]%, c6[x, 0.91%, c7[x, 0.9]%, cB[x, 0.91%, c9[x, 0.91%}],
{x, -10, 10}, PlotStyle- Table[Hue[0.1i], {i, 0, 3}1,
Background - Graylevel[0.7] , AxesLabel » {"x", "'},
Prolog - AbsoluteThickness[2] |

—_—

=-Graphics=-

Fig.48 Plot of the probability amplitudes c,* (n = 1 —9) for Co?" ion in the trigonal
field. £=0.9.

Squares of parameters, cl, c2, ¢3, c4, c5, c6 as a function of x
k=09
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Plot[Evaluate[{dl[x, 0.9]%, d2[x, 0.9]%, d3[x, 0.9]%, d4[x, 0.91%}],
{x, -10, 10}, PlotStyle- Table[Hue[0.2i], {i, 0, 3}],
Prolog- ARbsoluteThickness[2] , Background - GrayI.evel[0.7]]

=Graphics=

Fig.49 Plot of the probability amplitudes dn> (n = 1 — 4) for Co?" ion in the
trigonal field. £ = 0.9.

gc and ga, Lande g-factors along the c and a axes as a function of x

k=0.0,0.95,1.0
plc=Plot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1.0,0.05}]
] ’ {xr -

10,10} ,Prolog-»AbsoluteThickness[2] ,PlotStyle—»Table[Hue[0.15
il,{i,0,5}],PlotRange~»{{-10,10},{0,9}},
Background-GrayLevel[0.7]]

=Graphics=

Fig.50 Plot of gc and g, as a function of x for Co*" in the trigonal field. £ = 0.9,
0.95, and 1. gc>g. for x<0. g.<ga. for x>0.

Plot of gc vs ga
k=10.9,0.95, 1

pl=ParametricPlot[Evaluate[Table[{gc[x,k],ga[x,k]},{k,0.9,1
.0,0.05}11,{x,-

200,100} ,Prolog-»AbsoluteThickness[2] ,AxesLabel-»{"gc",6"ga"},
PlotStyle-»Table[Hue[0.3
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i],{i,0,5}],PlotRange-»{{0,10},{0,6}},
Background-GrayLevel[0.7]]

Fig.51 Calculated gc and g,-values of Co®" ion in the trigonal field. £ = 0.9 (red),
0.95 (green), and 1.0 (blue).

Parameters p and q as a function of x
k=0.8,0.9,1.0, 1.1
Plot[Evaluate[Table[{p[x,k],q[x,k]},{k,0.8.1.1,0.1}]1],{x,-
5,5}, PlotStyle-»Table[Hue[0.15
i],{i,0,6}],Prolog-»AbsoluteThickness[3] ,AxesLabel-»{"x","p,q
"}, Background-GrayLevel[0.7]]

=Graphics=

Fig.52 Plot of the parameters p (red) and ¢ (yellow) as a function of x for Co*"
ion in the trigonal field. £ = 0.8, 0.9, 1.0, and 1.0.

2

Parameter % - 1lasafunctionof x
q

k= 0.8, 0.9, 1.0, 1.1
Plot[Evaluate|[Table[p[x, k1?/qix, k]? -1, {k, 0.8, 1.1, 0.1}]],
{x, -5, 5}, PlotStyle- Table[Hue[0.7i], {i, 0, 6}],
Prolog - AbsoluteThickness[3] , AxesLabel » {"x", " (p%/f)-1"},
Background » Graylevel[0.7]]
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(p*/q) -1

=Graphics-=

Fig.53 Plot of p*/¢* — 1 as a function of x for Co®" ion in the trigonal field. k =
0.8,0.9, 1.0, and 1.0.

14. CONCLUSION

We have shown that the spin Hamiltonian well accurately describes the magnetic
properties of magnetic ions in the crystal field. When these magnetic ions are magnetically
coupled through exchange interactions, they may undergo a second-order phase transition
at a critical temperature [Curie temperature (ferromagnet) or a Néel temperature
(antiferromagnet)]. Spins are ordered below the critical temperature. The static critical
exponents depend on the dimensionality (d = 3, 2,) of the system and the symmetry
dimensionality of the order parameter [Ising (n = 1), XY (n = 2), and Heisenberg (n = 3)].
The spin dimensionality can be determined from the spin Hamiltonian.?! In two dimensions,
there are phase transitions for the Ising and XY spin symmetry. For example, KoCoF4 and
Rb2CoF4 are two-dimensional (2D) Ising-like antiferromagnet (fictitious spin 1/2), and
KoMnF, is a 2D Heisenberg antiferromagnet. In contrast, KoCuF4 (spin 1/2) is a 2D XY-
like ferromagnet.?* For the 2D Ising model, there is an exact Onsager solution,** while for
the 2D XYmodel, the system is predicted to show a Kosterlitz-Thouless (KT) transition.**
The spins form vortices at low temperatures. and below the KT transition temperature the
vortices become bound. The critical exponents of critical behaviors of the spin systems
with short range interactions depends only on the dimensionality d and the spin
dimensionality » (the universality).

Since the beginning of 1980’s, we have been studying the magnetic phase transitions
of quasi 2D spin systems such as stage-2 CoCl-, NiClx-, CuCl-, FeClz-, MnCl,-, and
CrCls- graphite intercalation compounds.?>=! We find that the magnetic properties of these
compounds are well described by the appropriate spin Hamiltonians of Co**, Ni**, Cu*",
Fe’*, Mn**, and Cr*" in the trigonal crystal field.
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Appendix
A.1  perturbation theory for the non-degenerate case
The Hamiltonian is given by
H=H,+H,, (A.1)
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where ﬁlo is an unprtturbed Hamiltonian and IEI1 is the perturbation. ‘Wn(0)> is the

eigenket of IEIO with an eigenvalue En(o) (non-degenerate case).

v,")=E"p,”). (A2)
Then the perturbation energy and the new eigenket are given by

W,,(O)>+z< A W”(O)><W"(O) A,

A

H,

v, |H,

(0)
Vi > N
~ (E”(O) o Ek(O))

E=E"+ i<w,,(°) H,

(A.3)

A

)

1

(0)

l//n(0>> n 1Z‘Wk(0)> <W"

o (E, —E ")

gl o

e (E© —EOYE© _E)

v,)=
(A4)

A

A1y,

1

H,

A.2  Kramers theorem for NV particles with spin 1/2
For spin 1/2, the time reversal operator is defined by

0= n exp(—%fyﬁ)le = —inaAyI% , (A.5)
where K is an operator which takes the complex conjugate and —id, is a unitary operator.
Suppose that |1//> is described by

lv)=Clr)+C ), (A6)
where C: and C. are complex numbers. Then the time reversal state is given by

7) =0|y) ==iné K(C,|+)+C_|-) ==iné (C,'|+)+ C_|-))
N =1(C.|5)=C|+)

—> = —i| +>. We again apply © to |l/7>
w)=O[n(C. =)~ C[#D]=~iné K[n(C, | ) = C|+))]
=—iné,[n (C.|-)-C_|+))] = ~il(C.6,|-) - C_& | +))]

= ~il(C.(-D)+)=CA+P) =~(C.[+)+C|-D=1y)

=—in(C,'6 |+)+C_ 6,

A

since 6y|+>=i|— , and G,

@2

or
0% =-1 (A7)
We can show that
() o
66607 =-6_, (A.8)
06,0 =-6,, (A.9)
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050" =-6.. (A.10)

z

. A ' ) * c
(i) ') and |@7) = @|y) are orthogonal, since (/|y) = (_,7 c 7 C*{JJ 0

We now consider the system with NV electrons. N is an even or an odd integer number.
For convenience we use 77 = 1. In general, the N-spins state |CD> is described by

|CD> - u1|+>1 +>2 +>3|+>4""|+>1v71|+>1v +u2|+>1|+>2|+>3|+>4 """ |+>1v71|_>1v

[+,
+u3|+>1|+>2|+>3|+>4""|_>1v71|_>1v RSO iy _>1|_>2|_>3|_>4""| _>N71|_>N

Since—i&yle|+>=|—>,and —io I%|—>=—|+>,we have

(A.11)

<CD‘&)> = ul*(—l)NuzN* + ul*uzN*

When N is odd, <CD‘CT)> =0, which means that |CD> and the time reversal state ‘&)> are

independent states.
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